Skip to main content
Erschienen in: Somnologie 1/2012

01.03.2012 | Originalien

Funktionelle Konnektivität im Schlaf

Netzwerkanalysen von kombinierten EEG-fMRT-Messungen

verfasst von: V.I. Spoormaker, M. Czisch

Erschienen in: Somnologie | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Zusammenfassung

Diese Übersichtsarbeit beschreibt die funktionelle Konnektivität des Gehirns im Übergang vom Wachen bis hin zum Tiefschlaf. Funktionelle Konnektivität, die als zeitliche Kohärenz zwischen verschiedenen neuronalen Ereignissen definiert ist, kann in mehreren Frequenzbändern evaluiert werden. Wir beschreiben kombinierte elektroenzephalographische und funktionelle magnetresonanztomographische (EEG-fMRT-)Messungen im Wachen sowie im leichten Schlaf und Tiefschlaf, mit einem Fokus auf spontane ultralangsame Fluktuationen im fMRT-Signal. Diese Fluktuationen haben neuronalen Ursprung und zeigen räumliche Kohärenz zwischen funktionell verknüpften Gehirnregionen auf, und können als Trägerwellen für höherfrequente Fluktuationen und Oszillationen fungieren. Verschiedene fMRT-Analysen – „Seed-Analysen“, räumlich-zeitlich unabhängige Komponentenanalysen sowie „Whole-brain-Analysen“ – zeigen lokale und globale Änderungen der funktionellen Konnektivität des Gehirns im Übergang vom Wachen zum Tiefschlaf, welche kritische Marker von Schlafstadien darstellen könnten.
Literatur
1.
Zurück zum Zitat Friston K (2002) Functional integration and inference in the brain. Prog Neurobiol 68:113–143PubMedCrossRef Friston K (2002) Functional integration and inference in the brain. Prog Neurobiol 68:113–143PubMedCrossRef
2.
Zurück zum Zitat Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRef
3.
Zurück zum Zitat Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedCrossRef Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedCrossRef
4.
Zurück zum Zitat Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853PubMedCrossRef Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853PubMedCrossRef
5.
Zurück zum Zitat Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRef Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRef
6.
Zurück zum Zitat Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090, discussion 97–99PubMedCrossRef Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090, discussion 97–99PubMedCrossRef
7.
Zurück zum Zitat Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678PubMedCrossRef Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678PubMedCrossRef
8.
Zurück zum Zitat Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRef Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRef
9.
Zurück zum Zitat Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedCrossRef Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedCrossRef
10.
Zurück zum Zitat Horovitz SG, Braun AR, Carr WS et al (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 106:11376–11381PubMedCrossRef Horovitz SG, Braun AR, Carr WS et al (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A 106:11376–11381PubMedCrossRef
11.
Zurück zum Zitat Horovitz SG, Fukunaga M, Zwart JA de et al (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682PubMedCrossRef Horovitz SG, Fukunaga M, Zwart JA de et al (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682PubMedCrossRef
12.
Zurück zum Zitat Larson-Prior LJ, Zempel JM, Nolan TS et al (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 106:4489–4494PubMedCrossRef Larson-Prior LJ, Zempel JM, Nolan TS et al (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 106:4489–4494PubMedCrossRef
13.
Zurück zum Zitat Sämann PG, Wehrle R, Hoehn D et al (2011) Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex 21:2082–2093PubMedCrossRef Sämann PG, Wehrle R, Hoehn D et al (2011) Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex 21:2082–2093PubMedCrossRef
14.
Zurück zum Zitat Ferri R, Rundo F, Bruni O et al (2007) Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol 118:449–456PubMedCrossRef Ferri R, Rundo F, Bruni O et al (2007) Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol 118:449–456PubMedCrossRef
15.
Zurück zum Zitat Ferri R, Rundo F, Bruni O et al (2008) The functional connectivity of different EEG bands moves towards small-world network organization during sleep. Clin Neurophysiol 119:2026–2036PubMedCrossRef Ferri R, Rundo F, Bruni O et al (2008) The functional connectivity of different EEG bands moves towards small-world network organization during sleep. Clin Neurophysiol 119:2026–2036PubMedCrossRef
16.
Zurück zum Zitat Massimini M, Ferrarelli F, Huber R et al (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232PubMedCrossRef Massimini M, Ferrarelli F, Huber R et al (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232PubMedCrossRef
17.
18.
Zurück zum Zitat Tononi G, Massimini M (2008) Why does consciousness fade in early sleep? Ann N Y Acad Sci 1129:330–334PubMedCrossRef Tononi G, Massimini M (2008) Why does consciousness fade in early sleep? Ann N Y Acad Sci 1129:330–334PubMedCrossRef
19.
Zurück zum Zitat Achard S, Salvador R, Whitcher B et al (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRef Achard S, Salvador R, Whitcher B et al (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedCrossRef
20.
Zurück zum Zitat Watts DJ, Strogatz SH (1998) Collective dynamics of ‚small-world‘ networks. Nature 393:440–442PubMedCrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of ‚small-world‘ networks. Nature 393:440–442PubMedCrossRef
21.
Zurück zum Zitat Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723PubMedCrossRef Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723PubMedCrossRef
22.
Zurück zum Zitat Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157PubMedCrossRef Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157PubMedCrossRef
23.
Zurück zum Zitat Heuvel MP van den, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29:7619–7624PubMedCrossRef Heuvel MP van den, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29:7619–7624PubMedCrossRef
24.
Zurück zum Zitat Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248PubMedCrossRef Bassett DS, Bullmore E, Verchinski BA et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248PubMedCrossRef
25.
Zurück zum Zitat Stam CJ, Haan W de, Daffertshofer A et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224PubMedCrossRef Stam CJ, Haan W de, Daffertshofer A et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224PubMedCrossRef
26.
Zurück zum Zitat Stam CJ (2009) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289:128–134PubMedCrossRef Stam CJ (2009) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289:128–134PubMedCrossRef
27.
Zurück zum Zitat Spoormaker VI, Schröter MS, Gleiser PM et al (2010) Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci 30:11379–11387PubMedCrossRef Spoormaker VI, Schröter MS, Gleiser PM et al (2010) Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci 30:11379–11387PubMedCrossRef
28.
Zurück zum Zitat Rechtschaffen A, Kales A (Hrsg) (1968) A manual of standardized terminology, techniques and scoring system of sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles Rechtschaffen A, Kales A (Hrsg) (1968) A manual of standardized terminology, techniques and scoring system of sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles
29.
Zurück zum Zitat Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905PubMedCrossRef Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905PubMedCrossRef
30.
Zurück zum Zitat Zhang D, Snyder AZ, Fox MD et al (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100:1740–1748PubMedCrossRef Zhang D, Snyder AZ, Fox MD et al (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100:1740–1748PubMedCrossRef
31.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
32.
Zurück zum Zitat Campbell KB, Colrain IM (2002) Event-related potential measures of the inhibition of information processing: II. The sleep onset period. Int J Psychophysiol 46:197–214PubMedCrossRef Campbell KB, Colrain IM (2002) Event-related potential measures of the inhibition of information processing: II. The sleep onset period. Int J Psychophysiol 46:197–214PubMedCrossRef
33.
Zurück zum Zitat Niiyama Y, Fujiwara R, Satoh N et al (1994) Endogenous components of event-related potential appearing during NREM stage 1 and REM sleep in man. Int J Psychophysiol 17:165–174PubMedCrossRef Niiyama Y, Fujiwara R, Satoh N et al (1994) Endogenous components of event-related potential appearing during NREM stage 1 and REM sleep in man. Int J Psychophysiol 17:165–174PubMedCrossRef
34.
Zurück zum Zitat Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053PubMedCrossRef Boveroux P, Vanhaudenhuyse A, Bruno MA et al (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053PubMedCrossRef
35.
Zurück zum Zitat Murphy M, Bruno MA, Riedner BA et al (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34:283–91APubMed Murphy M, Bruno MA, Riedner BA et al (2011) Propofol anesthesia and sleep: a high-density EEG study. Sleep 34:283–91APubMed
36.
Zurück zum Zitat Picchioni D, Horovitz SG, Fukunaga M et al (2010) Infraslow EEG oscillations organize large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res 1374:63–72PubMedCrossRef Picchioni D, Horovitz SG, Fukunaga M et al (2010) Infraslow EEG oscillations organize large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res 1374:63–72PubMedCrossRef
37.
Zurück zum Zitat Weissenbacher A, Kasess C, Gerstl F et al (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416PubMedCrossRef Weissenbacher A, Kasess C, Gerstl F et al (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416PubMedCrossRef
38.
Zurück zum Zitat Kaufmann C, Wehrle R, Wetter TC et al (2006) Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 129:655–667PubMedCrossRef Kaufmann C, Wehrle R, Wetter TC et al (2006) Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 129:655–667PubMedCrossRef
39.
Zurück zum Zitat Laufs H (2008) Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp 29:762–769PubMedCrossRef Laufs H (2008) Endogenous brain oscillations and related networks detected by surface EEG-combined fMRI. Hum Brain Mapp 29:762–769PubMedCrossRef
40.
41.
Zurück zum Zitat He BJ, Snyder AZ, Zempel JM et al (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105:16039–16044PubMedCrossRef He BJ, Snyder AZ, Zempel JM et al (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105:16039–16044PubMedCrossRef
42.
Zurück zum Zitat He BJ, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13:302–309PubMedCrossRef He BJ, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13:302–309PubMedCrossRef
43.
Zurück zum Zitat He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66:353–369PubMedCrossRef He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66:353–369PubMedCrossRef
44.
Zurück zum Zitat Mölle M, Born J (2011) Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 193:93–110PubMedCrossRef Mölle M, Born J (2011) Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 193:93–110PubMedCrossRef
45.
Zurück zum Zitat Mölle M, Eschenko O, Gais S et al (2009) The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29:1071–1081PubMedCrossRef Mölle M, Eschenko O, Gais S et al (2009) The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29:1071–1081PubMedCrossRef
46.
Zurück zum Zitat Clemens Z, Mölle M, Eross L et al (2011) Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci 33:511–520PubMedCrossRef Clemens Z, Mölle M, Eross L et al (2011) Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci 33:511–520PubMedCrossRef
47.
Zurück zum Zitat Andrade KC, Spoormaker VI, Dresler M et al (2011) Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci 31:10331–10339PubMedCrossRef Andrade KC, Spoormaker VI, Dresler M et al (2011) Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci 31:10331–10339PubMedCrossRef
48.
Zurück zum Zitat Schabus M, Dang-Vu TT, Albouy G et al (2007) Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 104:13164–13169PubMedCrossRef Schabus M, Dang-Vu TT, Albouy G et al (2007) Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 104:13164–13169PubMedCrossRef
Metadaten
Titel
Funktionelle Konnektivität im Schlaf
Netzwerkanalysen von kombinierten EEG-fMRT-Messungen
verfasst von
V.I. Spoormaker
M. Czisch
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
Somnologie / Ausgabe 1/2012
Print ISSN: 1432-9123
Elektronische ISSN: 1439-054X
DOI
https://doi.org/10.1007/s11818-012-0551-3

Weitere Artikel der Ausgabe 1/2012

Somnologie 1/2012 Zur Ausgabe

Mitteilungen der DGSM

Mitteilungen

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.