Skip to main content
Erschienen in: European Child & Adolescent Psychiatry 10/2015

01.10.2015 | Original Contribution

Gender effects on brain changes in early-onset psychosis

verfasst von: Marta Rapado-Castro, Cali F. Bartholomeusz, Josefina Castro-Fornieles, Ana González-Pinto, Soraya Otero, Inmaculada Baeza, Carmen Moreno, Montserrat Graell, Joost Janssen, Nuria Bargalló, Christos Pantelis, Manuel Desco, Celso Arango

Erschienen in: European Child & Adolescent Psychiatry | Ausgabe 10/2015

Einloggen, um Zugang zu erhalten

Abstract

Progressive loss of cortical gray matter (GM) and increase of cerebrospinal fluid (CSF) have been reported in early-onset psychosis (EOP). EOP typically begins during adolescence, a time when developmental brain trajectories differ by gender. This study aimed to determine gender differences in progression of brain changes in this population. A sample of 61 (21 females) adolescents with a first psychotic episode and a matched sample of 70 (23 females) controls underwent both baseline and 2-year follow-up anatomical brain imaging assessments. Regional GM and CSF volumes were obtained using automated methods based on the Talairach’s proportional grid system. At baseline, only male patients showed a clear pattern of alterations in the frontal lobe relative to controls (smaller GM and larger CSF volumes). However, parallel longitudinal changes for male and female patients relative to controls were observed, resulting in a common pattern of brain changes across both genders: rate of left frontal lobe GM volume loss was larger in male (−3.8 %) and female patients (−4.2 %) than in controls (−0.7 % males; −0.4 % females). The reverse was found for the CSF volume in the left frontal lobe. While the GM and CSF volumes of females with EOP appear to be within the normal range at initial illness onset, our results point to a similar trajectory of increased/accelerated brain changes in both male and female patients with EOP. The pattern of progression of brain changes in psychosis appears to be independent of gender or structural alterations on appearance of psychotic symptoms.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aleman A, Kahn RS, Selten JP (2003) Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 60(6):565–571CrossRefPubMed Aleman A, Kahn RS, Selten JP (2003) Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 60(6):565–571CrossRefPubMed
2.
Zurück zum Zitat Hafner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28(Suppl 2):17–54CrossRefPubMed Hafner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28(Suppl 2):17–54CrossRefPubMed
3.
Zurück zum Zitat McGrath JJ (2007) The surprisingly rich contours of schizophrenia epidemiology. Arch Gen Psychiatry 64(1):14–16CrossRefPubMed McGrath JJ (2007) The surprisingly rich contours of schizophrenia epidemiology. Arch Gen Psychiatry 64(1):14–16CrossRefPubMed
4.
Zurück zum Zitat Keshavan MS et al (2008) Schizophrenia, “just the facts”: what we know in 2008. Part 3: neurobiology. Schizophr Res 106(2–3):89–107CrossRefPubMed Keshavan MS et al (2008) Schizophrenia, “just the facts”: what we know in 2008. Part 3: neurobiology. Schizophr Res 106(2–3):89–107CrossRefPubMed
5.
Zurück zum Zitat Leung A, Chue P (2000) Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 401:3–38CrossRefPubMed Leung A, Chue P (2000) Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 401:3–38CrossRefPubMed
6.
Zurück zum Zitat Huber TJ et al (2005) Sex hormones in psychotic men. Psychoneuroendocrinology 30(1):111–114CrossRefPubMed Huber TJ et al (2005) Sex hormones in psychotic men. Psychoneuroendocrinology 30(1):111–114CrossRefPubMed
7.
Zurück zum Zitat Gogos A, Kwek P, van den Buuse M (2012) The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219(1):213–224CrossRefPubMed Gogos A, Kwek P, van den Buuse M (2012) The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219(1):213–224CrossRefPubMed
8.
Zurück zum Zitat Bora E et al (2011) The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 42(2):295–307 Bora E et al (2011) The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 42(2):295–307
9.
Zurück zum Zitat Nopoulos P et al (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res-Neuroimaging 98(1):1–13CrossRef Nopoulos P et al (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res-Neuroimaging 98(1):1–13CrossRef
10.
11.
Zurück zum Zitat Blakemore SJ (2012) Imaging brain development: the adolescent brain. Neuroimage 61(2):397–406CrossRefPubMed Blakemore SJ (2012) Imaging brain development: the adolescent brain. Neuroimage 61(2):397–406CrossRefPubMed
13.
Zurück zum Zitat Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957PubMedCentralPubMed Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957PubMedCentralPubMed
14.
Zurück zum Zitat Goldstein JM et al (2002) Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 59(2):154–164CrossRefPubMed Goldstein JM et al (2002) Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 59(2):154–164CrossRefPubMed
15.
Zurück zum Zitat Thompson PM et al (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98(20):11650–11655PubMedCentralCrossRefPubMed Thompson PM et al (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98(20):11650–11655PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Rapoport JL et al (1999) Progressive cortical change during adolescence in childhood-onset schizophrenia—a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 56(7):649–654CrossRefPubMed Rapoport JL et al (1999) Progressive cortical change during adolescence in childhood-onset schizophrenia—a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 56(7):649–654CrossRefPubMed
17.
Zurück zum Zitat Sporn AL et al (2003) Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 160(12):2181–2189CrossRefPubMed Sporn AL et al (2003) Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 160(12):2181–2189CrossRefPubMed
18.
Zurück zum Zitat Vidal CN et al (2006) Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch Gen Psychiatry 63(1):25–34CrossRefPubMed Vidal CN et al (2006) Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch Gen Psychiatry 63(1):25–34CrossRefPubMed
19.
Zurück zum Zitat Keller A et al (2003) Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 160(1):128–133CrossRefPubMed Keller A et al (2003) Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 160(1):128–133CrossRefPubMed
20.
Zurück zum Zitat Frazier JA et al (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34(1):37–46PubMedCentralCrossRefPubMed Frazier JA et al (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34(1):37–46PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat James ACD et al (2002) Evidence for non-progressive changes in adolescent-onset schizophrenia—follow-up magnetic resonance imaging study. Br J Psychiatry 180:339–344CrossRefPubMed James ACD et al (2002) Evidence for non-progressive changes in adolescent-onset schizophrenia—follow-up magnetic resonance imaging study. Br J Psychiatry 180:339–344CrossRefPubMed
22.
Zurück zum Zitat James AC et al (2004) Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 161(6):1023–1029CrossRefPubMed James AC et al (2004) Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 161(6):1023–1029CrossRefPubMed
23.
Zurück zum Zitat Weisinger B et al (2013) Lack of gender influence on cortical and subcortical gray matter development in childhood-onset schizophrenia. Schizophr Bull 39(1):52–58PubMedCentralCrossRefPubMed Weisinger B et al (2013) Lack of gender influence on cortical and subcortical gray matter development in childhood-onset schizophrenia. Schizophr Bull 39(1):52–58PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Hafner H et al (1995) When and how does schizophrenia produce social deficits. Eur Arch Psychiatry Clin Neurosci 246(1):17–28CrossRefPubMed Hafner H et al (1995) When and how does schizophrenia produce social deficits. Eur Arch Psychiatry Clin Neurosci 246(1):17–28CrossRefPubMed
25.
26.
28.
Zurück zum Zitat Reig S et al (2010) Multicenter study of brain volume abnormalities in children and adolescent-onset psychosis. Schizophr Bull 37(6):1270–1280 Reig S et al (2010) Multicenter study of brain volume abnormalities in children and adolescent-onset psychosis. Schizophr Bull 37(6):1270–1280
29.
Zurück zum Zitat Arango C et al (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69(1):16–26CrossRefPubMed Arango C et al (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69(1):16–26CrossRefPubMed
31.
Zurück zum Zitat Castro-Fornieles J et al (2007) The child and adolescent first-episode psychosis study (CAFEPS): design and baseline results. Schizophr Res 91(1–3):226–237CrossRefPubMed Castro-Fornieles J et al (2007) The child and adolescent first-episode psychosis study (CAFEPS): design and baseline results. Schizophr Res 91(1–3):226–237CrossRefPubMed
33.
Zurück zum Zitat Geller B et al (2001) Reliability of the Washington University in St. Louis Kiddie schedule for affective disorders and schizophrenia (WASH-U-KSADS) mania and rapid cycling sections. J Am Acad Child Adolesc Psychiatry 40(4):450–455CrossRefPubMed Geller B et al (2001) Reliability of the Washington University in St. Louis Kiddie schedule for affective disorders and schizophrenia (WASH-U-KSADS) mania and rapid cycling sections. J Am Acad Child Adolesc Psychiatry 40(4):450–455CrossRefPubMed
34.
Zurück zum Zitat Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276CrossRefPubMed Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276CrossRefPubMed
35.
Zurück zum Zitat Peralta V, Cuesta MJ (1994) Validation of positive and negative symptom scale (PANSS) in a sample of Spanish schizophrenia patients. Actas Luso Españolas de Neurología Psiquiatría y Ciencias Afines 22:171–177 Peralta V, Cuesta MJ (1994) Validation of positive and negative symptom scale (PANSS) in a sample of Spanish schizophrenia patients. Actas Luso Españolas de Neurología Psiquiatría y Ciencias Afines 22:171–177
36.
Zurück zum Zitat Shaffer D et al (1983) A children’s global assessment scale (CGAS). Arch Gen Psychiatry 40:1228–1231CrossRefPubMed Shaffer D et al (1983) A children’s global assessment scale (CGAS). Arch Gen Psychiatry 40:1228–1231CrossRefPubMed
37.
Zurück zum Zitat Fraguas D et al (2014) Duration of untreated psychosis predicts functional and clinical outcome in children and adolescents with first episode psychosis: a 2-year longitudinal study. Schizophr Res 152(1):130–138 Fraguas D et al (2014) Duration of untreated psychosis predicts functional and clinical outcome in children and adolescents with first episode psychosis: a 2-year longitudinal study. Schizophr Res 152(1):130–138
38.
Zurück zum Zitat Rey MJ et al (1989) Guidelines for the dosage of neuroleptics. I: chlorpromazine equivalents of orally-administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104CrossRefPubMed Rey MJ et al (1989) Guidelines for the dosage of neuroleptics. I: chlorpromazine equivalents of orally-administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104CrossRefPubMed
39.
Zurück zum Zitat Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667CrossRefPubMed Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667CrossRefPubMed
40.
Zurück zum Zitat Reig S et al (2009) Assessment of the increase in variability when combining volumetric data from different scanners. Hum Brain Mapp 30(2):355–368CrossRefPubMed Reig S et al (2009) Assessment of the increase in variability when combining volumetric data from different scanners. Hum Brain Mapp 30(2):355–368CrossRefPubMed
41.
Zurück zum Zitat Andreasen NC et al (1996) Automatic atlas-based volume estimation of human brain regions from MR images. J Comput Assist Tomogr 20(1):98–106CrossRefPubMed Andreasen NC et al (1996) Automatic atlas-based volume estimation of human brain regions from MR images. J Comput Assist Tomogr 20(1):98–106CrossRefPubMed
42.
Zurück zum Zitat Kates WR et al (1999) Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children. Psychiatry Res-Neuroimaging 91(1):11–30CrossRef Kates WR et al (1999) Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children. Psychiatry Res-Neuroimaging 91(1):11–30CrossRef
43.
Zurück zum Zitat Desco M et al (2001) Multimodality image quantification using Talairach grid. In: Sonka M, Hason KM (eds) In: Proceedings from the international society for optical engineering, 18–22 February 2001, San Diego CA Desco M et al (2001) Multimodality image quantification using Talairach grid. In: Sonka M, Hason KM (eds) In: Proceedings from the international society for optical engineering, 18–22 February 2001, San Diego CA
44.
Zurück zum Zitat Ashburner J, Friston KJ (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6:209–217CrossRefPubMed Ashburner J, Friston KJ (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6:209–217CrossRefPubMed
45.
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York
46.
Zurück zum Zitat Huber TJ et al (2001) Estradiol levels in psychotic disorders. Psychoneuroendocrinology 26(1):27–35CrossRefPubMed Huber TJ et al (2001) Estradiol levels in psychotic disorders. Psychoneuroendocrinology 26(1):27–35CrossRefPubMed
47.
Zurück zum Zitat Kulkarni J et al (2008) Estrogen in severe mental illness: a potential new treatment approach. Arch Gen Psychiatry 65(8):955–960CrossRefPubMed Kulkarni J et al (2008) Estrogen in severe mental illness: a potential new treatment approach. Arch Gen Psychiatry 65(8):955–960CrossRefPubMed
48.
49.
Zurück zum Zitat Nopoulos P, Flaum M, Andreasen N (1997) Sex differences in brain morphology in schizophrenia. Am J Psychiatry 154:1648–1654CrossRefPubMed Nopoulos P, Flaum M, Andreasen N (1997) Sex differences in brain morphology in schizophrenia. Am J Psychiatry 154:1648–1654CrossRefPubMed
50.
Zurück zum Zitat Molina V et al (2005) Association between excessive frontal cerebrospinal fluid and illness duration in males but not in females with schizophrenia. Eur Psychiatry 20:332–338CrossRefPubMed Molina V et al (2005) Association between excessive frontal cerebrospinal fluid and illness duration in males but not in females with schizophrenia. Eur Psychiatry 20:332–338CrossRefPubMed
51.
Zurück zum Zitat Beltz AM, Berenbaum SA (2013) Cognitive effects of variations in pubertal timing: is puberty a period of brain organization for human sex-typed cognition? Horm Behav 63(5):823–828CrossRefPubMed Beltz AM, Berenbaum SA (2013) Cognitive effects of variations in pubertal timing: is puberty a period of brain organization for human sex-typed cognition? Horm Behav 63(5):823–828CrossRefPubMed
52.
Zurück zum Zitat Field EF et al (2004) Neonatal and pubertal, but not adult, ovarian steroids are necessary for the development of female-typical patterns of dodging to protect a food item. Behav Neurosci 118(6):1293–1304CrossRefPubMed Field EF et al (2004) Neonatal and pubertal, but not adult, ovarian steroids are necessary for the development of female-typical patterns of dodging to protect a food item. Behav Neurosci 118(6):1293–1304CrossRefPubMed
53.
Zurück zum Zitat Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604PubMedCentralCrossRefPubMed Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Ismail N, Garas P, Blaustein JD (2011) Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-alpha expression in CD-1 female mice. Horm Behav 59(4):565–571PubMedCentralCrossRefPubMed Ismail N, Garas P, Blaustein JD (2011) Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-alpha expression in CD-1 female mice. Horm Behav 59(4):565–571PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Cropley V, Wood SJ, Pantelis C (2013) Brain structural, neurochemical and neuroinflammatory markers of psychosis onset and relapse: is there evidence for a psychosis relapse signature? Int Clin Psychopharmacol [Epub ahead of print] Cropley V, Wood SJ, Pantelis C (2013) Brain structural, neurochemical and neuroinflammatory markers of psychosis onset and relapse: is there evidence for a psychosis relapse signature? Int Clin Psychopharmacol [Epub ahead of print]
56.
Zurück zum Zitat Fraguas D et al (2012) Decreased glutathione levels predict loss of brain volume in children and adolescents with first-episode psychosis in a two-year longitudinal study. Schizophr Res 137(1–3):58–65CrossRefPubMed Fraguas D et al (2012) Decreased glutathione levels predict loss of brain volume in children and adolescents with first-episode psychosis in a two-year longitudinal study. Schizophr Res 137(1–3):58–65CrossRefPubMed
57.
Zurück zum Zitat Cahn W et al (2009) Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 19(2):147–151CrossRefPubMed Cahn W et al (2009) Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 19(2):147–151CrossRefPubMed
58.
Zurück zum Zitat Sun D et al (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14(10):976–986PubMedCentralCrossRefPubMed Sun D et al (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14(10):976–986PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Pantelis C et al (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31(3):672–696CrossRefPubMed Pantelis C et al (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31(3):672–696CrossRefPubMed
61.
62.
Zurück zum Zitat Andreasen NC et al (2013) Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 170(6):609–615CrossRefPubMed Andreasen NC et al (2013) Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 170(6):609–615CrossRefPubMed
63.
Zurück zum Zitat Sowell ER et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315CrossRefPubMed Sowell ER et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315CrossRefPubMed
64.
Zurück zum Zitat Jernigan TL et al (1991) Maturation of human cerebrum observed in vivo during adolescence. Brain 114(5):2037–2049CrossRefPubMed Jernigan TL et al (1991) Maturation of human cerebrum observed in vivo during adolescence. Brain 114(5):2037–2049CrossRefPubMed
65.
Zurück zum Zitat Zipursky RB, Reilly TJ, Murray RM (2012) The myth of schizophrenia as a progressive brain disease. Schizophr Bull 39(6):1363–1372 Zipursky RB, Reilly TJ, Murray RM (2012) The myth of schizophrenia as a progressive brain disease. Schizophr Bull 39(6):1363–1372
66.
Zurück zum Zitat Cannon TD, Mednick SA, Parnas J (1989) Genetic and perinatal determinants of structural brain deficits in schizophrenia. Arch Gen Psychiatry 46:883–889CrossRefPubMed Cannon TD, Mednick SA, Parnas J (1989) Genetic and perinatal determinants of structural brain deficits in schizophrenia. Arch Gen Psychiatry 46:883–889CrossRefPubMed
67.
Zurück zum Zitat Keshavan MS, Anderson S, Pettegrew JW (1994) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28:239–265CrossRefPubMed Keshavan MS, Anderson S, Pettegrew JW (1994) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28:239–265CrossRefPubMed
68.
Zurück zum Zitat Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178CrossRefPubMed Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178CrossRefPubMed
69.
Zurück zum Zitat Lenroot RK et al (2009) Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 30(1):163–174CrossRefPubMed Lenroot RK et al (2009) Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 30(1):163–174CrossRefPubMed
70.
Zurück zum Zitat Kulkarni J, Hayes E, Gavrilidis E (2012) Hormones and schizophrenia. Curr Opin Psychiatry 25(2):89–95CrossRefPubMed Kulkarni J, Hayes E, Gavrilidis E (2012) Hormones and schizophrenia. Curr Opin Psychiatry 25(2):89–95CrossRefPubMed
71.
Zurück zum Zitat Gur RE et al (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768CrossRefPubMed Gur RE et al (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768CrossRefPubMed
72.
Zurück zum Zitat Velakoulis D et al (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63(2):139–149CrossRefPubMed Velakoulis D et al (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63(2):139–149CrossRefPubMed
73.
Zurück zum Zitat Pantelis C, Velakoulis D, McGorry PD et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288CrossRefPubMed Pantelis C, Velakoulis D, McGorry PD et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288CrossRefPubMed
74.
Zurück zum Zitat Cropley VL, Pantelis C (2014) Using longitudinal imaging to map the ‘relapse signature’ of schizophrenia and other psychoses. Epidemiol Psychiatr Sci 23(3):219–225CrossRefPubMed Cropley VL, Pantelis C (2014) Using longitudinal imaging to map the ‘relapse signature’ of schizophrenia and other psychoses. Epidemiol Psychiatr Sci 23(3):219–225CrossRefPubMed
75.
76.
Zurück zum Zitat Hollingshead AB, Redlich FC (1954) Schizophrenia and social structure. Am J Psychiatry 110(9):695–701CrossRefPubMed Hollingshead AB, Redlich FC (1954) Schizophrenia and social structure. Am J Psychiatry 110(9):695–701CrossRefPubMed
Metadaten
Titel
Gender effects on brain changes in early-onset psychosis
verfasst von
Marta Rapado-Castro
Cali F. Bartholomeusz
Josefina Castro-Fornieles
Ana González-Pinto
Soraya Otero
Inmaculada Baeza
Carmen Moreno
Montserrat Graell
Joost Janssen
Nuria Bargalló
Christos Pantelis
Manuel Desco
Celso Arango
Publikationsdatum
01.10.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Child & Adolescent Psychiatry / Ausgabe 10/2015
Print ISSN: 1018-8827
Elektronische ISSN: 1435-165X
DOI
https://doi.org/10.1007/s00787-014-0669-x

Weitere Artikel der Ausgabe 10/2015

European Child & Adolescent Psychiatry 10/2015 Zur Ausgabe

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.