Skip to main content
Erschienen in: Strahlentherapie und Onkologie 4/2016

06.02.2016 | Review Article

Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging

verfasst von: Univ.-Prof. Dr. Stephanie E. Combs, Fridtjof Nüsslin, Jan J. Wilkens

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Literatur
1.
Zurück zum Zitat Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24:207–209CrossRefPubMed Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24:207–209CrossRefPubMed
2.
Zurück zum Zitat Lagendijk JJ, Raaymakers B, van der Heide U, Overweg J, Brown K, Bakker C, Raaijmakers AJ, Vulpen M, Welleweerd J, Jurgenliemk-Schulz I (2005) In room magnetic resonance imaging guided radiotherapy_MRIgRT. Med Phys 32 2067 Lagendijk JJ, Raaymakers B, van der Heide U, Overweg J, Brown K, Bakker C, Raaijmakers AJ, Vulpen M, Welleweerd J, Jurgenliemk-Schulz I (2005) In room magnetic resonance imaging guided radiotherapy_MRIgRT. Med Phys 32 2067
3.
Zurück zum Zitat Dempsey JF, Benoit D, Fitzsimmons JR, Haghighat A, Li JG, Low DA, Mutic S, Palta JR, Romeijn HE, Sjoden GE A device for realtime 3D image-guided IMRT,” 47th Annual ASTRO General Meeting, Denver, CO, 2005, abstract _unpublished_. 47th Annual ASTRO General Meeting, Denver, CO, 2005. Abstract Dempsey JF, Benoit D, Fitzsimmons JR, Haghighat A, Li JG, Low DA, Mutic S, Palta JR, Romeijn HE, Sjoden GE A device for realtime 3D image-guided IMRT,” 47th Annual ASTRO General Meeting, Denver, CO, 2005, abstract _unpublished_. 47th Annual ASTRO General Meeting, Denver, CO, 2005. Abstract
4.
Zurück zum Zitat Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24:200–202CrossRefPubMed Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24:200–202CrossRefPubMed
5.
Zurück zum Zitat Fallone BG et al (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36:2084–2088CrossRefPubMed Fallone BG et al (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36:2084–2088CrossRefPubMed
7.
Zurück zum Zitat Menard C, van der Heide U (2014) Introduction: systems for magnetic resonance image guided radiation therapy. Semin Radiat Oncol 24:192CrossRefPubMed Menard C, van der Heide U (2014) Introduction: systems for magnetic resonance image guided radiation therapy. Semin Radiat Oncol 24:192CrossRefPubMed
8.
Zurück zum Zitat Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24:196–199CrossRefPubMed Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24:196–199CrossRefPubMed
9.
Zurück zum Zitat Jaffray DA et al (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24:193–195CrossRefPubMed Jaffray DA et al (2014) A facility for magnetic resonance-guided radiation therapy. Semin Radiat Oncol 24:193–195CrossRefPubMed
11.
Zurück zum Zitat Keall PJ et al (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24:203–206CrossRefPubMed Keall PJ et al (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24:203–206CrossRefPubMed
12.
Zurück zum Zitat Raaijmakers AJ, Raaymakers BW, Lagendijk JJ (2008) Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol 53:909–923CrossRefPubMed Raaijmakers AJ, Raaymakers BW, Lagendijk JJ (2008) Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol 53:909–923CrossRefPubMed
13.
Zurück zum Zitat Raaijmakers AJ, Raaymakers BW, Lagendijk JJ (2005) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol 50:1363–1376CrossRefPubMed Raaijmakers AJ, Raaymakers BW, Lagendijk JJ (2005) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol 50:1363–1376CrossRefPubMed
14.
Zurück zum Zitat Nischwitz SP et al (2015) Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma. Radiother Oncol 115:179–185CrossRefPubMed Nischwitz SP et al (2015) Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma. Radiother Oncol 115:179–185CrossRefPubMed
15.
Zurück zum Zitat Rieken S et al (2013) Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 109:487–492CrossRefPubMed Rieken S et al (2013) Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 109:487–492CrossRefPubMed
16.
Zurück zum Zitat Afshar-Oromieh A et al (2015) Comparison of (6)(8)Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol 17:312–319CrossRefPubMedPubMedCentral Afshar-Oromieh A et al (2015) Comparison of (6)(8)Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro Oncol 17:312–319CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Fuss M et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58CrossRefPubMed Fuss M et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58CrossRefPubMed
18.
Zurück zum Zitat Wenz F et al (1996) Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 166:187–193CrossRefPubMed Wenz F et al (1996) Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 166:187–193CrossRefPubMed
19.
Zurück zum Zitat Ravn S et al (2013) Differences in supratentorial white matter diffusion after radiotherapy—new biomarker of normal brain tissue damage? Acta Oncol 52:1314–1319CrossRefPubMed Ravn S et al (2013) Differences in supratentorial white matter diffusion after radiotherapy—new biomarker of normal brain tissue damage? Acta Oncol 52:1314–1319CrossRefPubMed
20.
Zurück zum Zitat Bondiau PY et al (2011) Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins. Phys Med 27:103–108CrossRefPubMed Bondiau PY et al (2011) Biocomputing: numerical simulation of glioblastoma growth and comparison with conventional irradiation margins. Phys Med 27:103–108CrossRefPubMed
21.
Zurück zum Zitat Ratai EM et al (2013) Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. Neuro Oncol 15:936–944CrossRefPubMedPubMedCentral Ratai EM et al (2013) Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. Neuro Oncol 15:936–944CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014CrossRefPubMedPubMedCentral Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Muruganandham M et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 T for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90:181–189CrossRefPubMedPubMedCentral Muruganandham M et al (2014) 3-Dimensional magnetic resonance spectroscopic imaging at 3 T for early response assessment of glioblastoma patients during external beam radiation therapy. Int J Radiat Oncol Biol Phys 90:181–189CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Berberat J et al (2014) Diffusion tensor imaging for target volume definition in glioblastoma multiforme. Strahlenther Onkol 190:939–943CrossRefPubMed Berberat J et al (2014) Diffusion tensor imaging for target volume definition in glioblastoma multiforme. Strahlenther Onkol 190:939–943CrossRefPubMed
25.
Zurück zum Zitat Konukoglu E et al (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95CrossRefPubMed Konukoglu E et al (2010) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95CrossRefPubMed
26.
Zurück zum Zitat Trepanier PY et al (2012) A Monte Carlo based formalism to identify potential locations at high risk of tumor recurrence with a numerical model for glioblastoma multiforme. Med Phys 39:6682–6691CrossRefPubMed Trepanier PY et al (2012) A Monte Carlo based formalism to identify potential locations at high risk of tumor recurrence with a numerical model for glioblastoma multiforme. Med Phys 39:6682–6691CrossRefPubMed
27.
Zurück zum Zitat Mazzola R et al (2014) Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment. Br J Radiol 87:20140543CrossRefPubMedPubMedCentral Mazzola R et al (2014) Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment. Br J Radiol 87:20140543CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Bijl HP et al (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281CrossRefPubMed Bijl HP et al (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281CrossRefPubMed
29.
Zurück zum Zitat Konings AW et al (2006) Secondary radiation damage as the main cause for unexpected volume effects: a histopathologic study of the parotid gland. Int J Radiat Oncol Biol Phys 64:98–105CrossRefPubMed Konings AW et al (2006) Secondary radiation damage as the main cause for unexpected volume effects: a histopathologic study of the parotid gland. Int J Radiat Oncol Biol Phys 64:98–105CrossRefPubMed
30.
Zurück zum Zitat Nielsen TB et al (2014) Inhomogeneous dose escalation increases expected local control for NSCLC patients with lymph node involvement without increased mean lung dose. Acta Oncol 53:119–125CrossRefPubMed Nielsen TB et al (2014) Inhomogeneous dose escalation increases expected local control for NSCLC patients with lymph node involvement without increased mean lung dose. Acta Oncol 53:119–125CrossRefPubMed
31.
Zurück zum Zitat van Elmpt W et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104:67–71CrossRefPubMed van Elmpt W et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104:67–71CrossRefPubMed
32.
Zurück zum Zitat Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805CrossRefPubMed Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805CrossRefPubMed
33.
Zurück zum Zitat zum Buschenfelde CM et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52:1189–1196CrossRef zum Buschenfelde CM et al (2011) (18)F-FDG PET-guided salvage neoadjuvant radiochemotherapy of adenocarcinoma of the esophagogastric junction: the MUNICON II trial. J Nucl Med 52:1189–1196CrossRef
34.
Zurück zum Zitat Warren S et al (2014) Radiobiological determination of dose escalation and normal tissue toxicity in definitive chemoradiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys 90:423–429CrossRefPubMedPubMedCentral Warren S et al (2014) Radiobiological determination of dose escalation and normal tissue toxicity in definitive chemoradiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys 90:423–429CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Gkika E et al (2014) Long-term results of definitive radiochemotherapy in locally advanced cancers of the cervical esophagus. Dis Esophagus 27:678–684CrossRefPubMed Gkika E et al (2014) Long-term results of definitive radiochemotherapy in locally advanced cancers of the cervical esophagus. Dis Esophagus 27:678–684CrossRefPubMed
36.
Zurück zum Zitat Freilich J et al (2015) Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. Dis Esophagus 28:352–357CrossRefPubMed Freilich J et al (2015) Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. Dis Esophagus 28:352–357CrossRefPubMed
37.
Zurück zum Zitat van Hagen P et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366:2074–2084CrossRefPubMed van Hagen P et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366:2074–2084CrossRefPubMed
38.
Zurück zum Zitat Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998CrossRefPubMed Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998CrossRefPubMed
39.
Zurück zum Zitat Marks LB et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63:214–223CrossRefPubMed Marks LB et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63:214–223CrossRefPubMed
40.
Zurück zum Zitat Graeff C, Durante M, Bert C (2012) Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 39:6004–6013CrossRefPubMed Graeff C, Durante M, Bert C (2012) Motion mitigation in intensity modulated particle therapy by internal target volumes covering range changes. Med Phys 39:6004–6013CrossRefPubMed
41.
Zurück zum Zitat Bert C, Durante M (2011) Motion in radiotherapy: particle therapy. Phys Med Biol 56:R113–R144CrossRefPubMed Bert C, Durante M (2011) Motion in radiotherapy: particle therapy. Phys Med Biol 56:R113–R144CrossRefPubMed
42.
Zurück zum Zitat Naumann P et al (2013) Outcome after neoadjuvant chemoradiation and correlation with nutritional status in patients with locally advanced pancreatic cancer. Strahlenther Onkol 189:745–752CrossRefPubMed Naumann P et al (2013) Outcome after neoadjuvant chemoradiation and correlation with nutritional status in patients with locally advanced pancreatic cancer. Strahlenther Onkol 189:745–752CrossRefPubMed
43.
Zurück zum Zitat Combs SE et al (2013) Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort. Strahlenther Onkol 189:738–744CrossRefPubMed Combs SE et al (2013) Intensity modulated radiotherapy as neoadjuvant chemoradiation for the treatment of patients with locally advanced pancreatic cancer. Outcome analysis and comparison with a 3D-treated patient cohort. Strahlenther Onkol 189:738–744CrossRefPubMed
44.
Zurück zum Zitat Benson AB 3rd et al (2012) Rectal cancer. J Natl Compr Canc Netw 10:1528–1564PubMed Benson AB 3rd et al (2012) Rectal cancer. J Natl Compr Canc Netw 10:1528–1564PubMed
45.
Zurück zum Zitat Maas M et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640CrossRefPubMed Maas M et al (2011) Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol 29:4633–4640CrossRefPubMed
46.
Zurück zum Zitat Glynne-Jones R, Tan D, Goh V (2014) Pelvic MRI for guiding treatment decisions in rectal cancer. Oncology (Williston Park) 28:667–677 Glynne-Jones R, Tan D, Goh V (2014) Pelvic MRI for guiding treatment decisions in rectal cancer. Oncology (Williston Park) 28:667–677
47.
Zurück zum Zitat Bartram C, Brown G (2002) Endorectal ultrasound and magnetic resonance imaging in rectal cancer staging. Gastroenterol Clin North Am 31:827–839CrossRefPubMed Bartram C, Brown G (2002) Endorectal ultrasound and magnetic resonance imaging in rectal cancer staging. Gastroenterol Clin North Am 31:827–839CrossRefPubMed
48.
Zurück zum Zitat Burbach JP et al (2014) Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol 113:1–9CrossRefPubMed Burbach JP et al (2014) Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol 113:1–9CrossRefPubMed
50.
Zurück zum Zitat Schiller K et al (2014) Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer: a study of 2940 setup deviations in 980 MVCTs. Strahlenther Onkol 190:722–726CrossRefPubMed Schiller K et al (2014) Impact of different setup approaches in image-guided radiotherapy as primary treatment for prostate cancer: a study of 2940 setup deviations in 980 MVCTs. Strahlenther Onkol 190:722–726CrossRefPubMed
51.
Zurück zum Zitat Habl G et al (2014) Ion Prostate Irradiation (IPI)—a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. BMC Cancer 14:202CrossRefPubMedPubMedCentral Habl G et al (2014) Ion Prostate Irradiation (IPI)—a pilot study to establish the safety and feasibility of primary hypofractionated irradiation of the prostate with protons and carbon ions in a raster scan technique. BMC Cancer 14:202CrossRefPubMedPubMedCentral
52.
53.
Zurück zum Zitat Dowling JA et al (2012) An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 83:e5–e11CrossRefPubMed Dowling JA et al (2012) An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 83:e5–e11CrossRefPubMed
54.
Zurück zum Zitat Uh J et al (2014) MRI-based treatment planning with pseudo CT generated through atlas registration. Med Phys 41:051711CrossRefPubMed Uh J et al (2014) MRI-based treatment planning with pseudo CT generated through atlas registration. Med Phys 41:051711CrossRefPubMed
55.
Zurück zum Zitat Korhonen J et al (2014) A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 41:011704CrossRefPubMed Korhonen J et al (2014) A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 41:011704CrossRefPubMed
56.
Zurück zum Zitat Jonsson JH et al (2013) Treatment planning of intracranial targets on MRI derived substitute CT data. Radiother Oncol 108:118–122CrossRefPubMed Jonsson JH et al (2013) Treatment planning of intracranial targets on MRI derived substitute CT data. Radiother Oncol 108:118–122CrossRefPubMed
57.
Zurück zum Zitat Hissoiny S et al (2011) Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol 56:5119–5129CrossRefPubMed Hissoiny S et al (2011) Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol 56:5119–5129CrossRefPubMed
58.
Zurück zum Zitat Yang YM, Bednarz B (2013) Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field. Phys Med Biol 58:N47–N58CrossRefPubMed Yang YM, Bednarz B (2013) Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field. Phys Med Biol 58:N47–N58CrossRefPubMed
59.
Zurück zum Zitat St Aubin J, Keyvanloo A, Vassiliev O et al (2015) A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields. Med Phys 42:780–793CrossRefPubMed St Aubin J, Keyvanloo A, Vassiliev O et al (2015) A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields. Med Phys 42:780–793CrossRefPubMed
60.
Zurück zum Zitat Raaijmakers AJ et al (2007) Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field. Phys Med Biol 52:7045–7054CrossRefPubMed Raaijmakers AJ et al (2007) Dose optimization for the MRI-accelerator: IMRT in the presence of a magnetic field. Phys Med Biol 52:7045–7054CrossRefPubMed
61.
Zurück zum Zitat Rausch M, Schyboll F, Neeb H (2013) First Measurement of signale changes induced by ionizing radiation in magnetic resonance imaging. TM Technisches Messen 80:397–403CrossRef Rausch M, Schyboll F, Neeb H (2013) First Measurement of signale changes induced by ionizing radiation in magnetic resonance imaging. TM Technisches Messen 80:397–403CrossRef
63.
Zurück zum Zitat Hartman J et al (2015) Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T. Phys Med Biol 60:5955–5969CrossRefPubMed Hartman J et al (2015) Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T. Phys Med Biol 60:5955–5969CrossRefPubMed
Metadaten
Titel
Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging
verfasst von
Univ.-Prof. Dr. Stephanie E. Combs
Fridtjof Nüsslin
Jan J. Wilkens
Publikationsdatum
06.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 4/2016
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-0944-5

Weitere Artikel der Ausgabe 4/2016

Strahlentherapie und Onkologie 4/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.