Skip to main content
Erschienen in: Journal of Neurology 11/2014

01.11.2014 | Neurological Update

Inherited disorders of the neuromuscular junction: an update

verfasst von: Pedro M. Rodríguez Cruz, Jacqueline Palace, David Beeson

Erschienen in: Journal of Neurology | Ausgabe 11/2014

Einloggen, um Zugang zu erhalten

Abstract

Congenital myasthenic syndromes (CMSs) are a group of heterogeneous inherited disorders caused by mutations in genes affecting the function and structure of the neuromuscular junction. This review updates the reader on established and novel subtypes of congenital myasthenia, and the treatment strategies for these increasingly heterogeneous disorders. The discovery of mutations associated with the N-glycosylation pathway and in the family of serine peptidases has shown that causative genes encoding ubiquitously expressed molecules can produce defects at the human neuromuscular junction. By contrast, mutations in lipoprotein-like receptor 4 (LRP4), a long-time candidate gene for congenital myasthenia, and a novel phenotype of myasthenia with distal weakness and atrophy due to mutations in AGRN have now been described. In addition, a pathogenic splicing mutation in a nonfunctional exon of CHRNA1 has been reported emphasizing the importance of analysing nonfunctional exons in genetic analysis. The benefit of salbutamol and ephedrine alone or combined with pyridostigmine or 3,4-DAP is increasingly being reported for particular subtypes of CMS.
Literatur
1.
Zurück zum Zitat Palace J, Beeson D (2008) The congenital myasthenic syndromes. J Neuroimmunol 201–202:2–5CrossRefPubMed Palace J, Beeson D (2008) The congenital myasthenic syndromes. J Neuroimmunol 201–202:2–5CrossRefPubMed
2.
Zurück zum Zitat Belaya K, Finlayson S, Slater CR et al (2012) Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 91:193–201PubMedCentralCrossRefPubMed Belaya K, Finlayson S, Slater CR et al (2012) Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 91:193–201PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Senderek J, Müller JS, Dusl M et al (2011) Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 88:162–172PubMedCentralCrossRefPubMed Senderek J, Müller JS, Dusl M et al (2011) Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet 88:162–172PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Chaouch A, Beeson D, Hantaï D, Lochmüller H (2012) 186th ENMC international workshop: congenital myasthenic syndromes 24–26 June 2011, Naarden, The Netherlands. Neuromuscul Disord 22:566–576CrossRefPubMed Chaouch A, Beeson D, Hantaï D, Lochmüller H (2012) 186th ENMC international workshop: congenital myasthenic syndromes 24–26 June 2011, Naarden, The Netherlands. Neuromuscul Disord 22:566–576CrossRefPubMed
7.
Zurück zum Zitat Finlayson S, Beeson D, Palace J (2013) Congenital myasthenic syndromes: an update. Pract Neurol 13:80–91CrossRefPubMed Finlayson S, Beeson D, Palace J (2013) Congenital myasthenic syndromes: an update. Pract Neurol 13:80–91CrossRefPubMed
8.
Zurück zum Zitat Webster R, Maxwell S, Spearman H et al (2012) A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain 135:1070–1080CrossRefPubMed Webster R, Maxwell S, Spearman H et al (2012) A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain 135:1070–1080CrossRefPubMed
9.
Zurück zum Zitat Zhu H, Pytel P, Gomez CM (2014) Selective inhibition of caspases in skeletal muscle reverses the apoptotic synaptic degeneration in slow-channel myasthenic syndrome. Hum Mol Genet 23:69–77CrossRefPubMed Zhu H, Pytel P, Gomez CM (2014) Selective inhibition of caspases in skeletal muscle reverses the apoptotic synaptic degeneration in slow-channel myasthenic syndrome. Hum Mol Genet 23:69–77CrossRefPubMed
10.
Zurück zum Zitat Chaouch A, Müller JS, Guergueltcheva V et al (2012) A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol 259:474–481CrossRefPubMed Chaouch A, Müller JS, Guergueltcheva V et al (2012) A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol 259:474–481CrossRefPubMed
11.
Zurück zum Zitat Webster RG, Cossins J, Lashley D et al (2013) A mouse model of the slow channel myasthenic syndrome: Neuromuscular physiology and effects of ephedrine treatment. Exp Neurol 248:286–298CrossRefPubMed Webster RG, Cossins J, Lashley D et al (2013) A mouse model of the slow channel myasthenic syndrome: Neuromuscular physiology and effects of ephedrine treatment. Exp Neurol 248:286–298CrossRefPubMed
12.
Zurück zum Zitat Palace J, Lashley D, Bailey S et al (2012) Clinical features in a series of fast channel congenital myasthenia syndrome. Neuromuscul Disord 22:112–117CrossRefPubMed Palace J, Lashley D, Bailey S et al (2012) Clinical features in a series of fast channel congenital myasthenia syndrome. Neuromuscul Disord 22:112–117CrossRefPubMed
13.
Zurück zum Zitat Shen X-M, Brengman JM, Edvardson S et al (2012) Highly fatal fast-channel syndrome caused by AChR ε subunit mutation at the agonist binding site. Neurology 79:449–454PubMedCentralCrossRefPubMed Shen X-M, Brengman JM, Edvardson S et al (2012) Highly fatal fast-channel syndrome caused by AChR ε subunit mutation at the agonist binding site. Neurology 79:449–454PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Shen X, Brengman JM, Sine SM, Engel AG (2012) Myasthenic syndrome AChR α C-loop mutant disrupts initiation of channel gating. J Clin Invest 122:2613–2621PubMedCentralCrossRefPubMed Shen X, Brengman JM, Sine SM, Engel AG (2012) Myasthenic syndrome AChR α C-loop mutant disrupts initiation of channel gating. J Clin Invest 122:2613–2621PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Webster R, Liu W-W, Chaouch A et al (2013) Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α-ε subunit interface. Neuromuscul Disord 24:143–147CrossRefPubMed Webster R, Liu W-W, Chaouch A et al (2013) Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α-ε subunit interface. Neuromuscul Disord 24:143–147CrossRefPubMed
16.
Zurück zum Zitat Mukhtasimova N, Sine SM (2007) An intersubunit trigger of channel gating in the muscle nicotinic receptor. J Neurosci 27:4110–4119CrossRefPubMed Mukhtasimova N, Sine SM (2007) An intersubunit trigger of channel gating in the muscle nicotinic receptor. J Neurosci 27:4110–4119CrossRefPubMed
17.
Zurück zum Zitat Rahman MA, Masuda A, Ohe K et al (2013) HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA. Sci Rep 3:2931PubMedCentralCrossRefPubMed Rahman MA, Masuda A, Ohe K et al (2013) HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA. Sci Rep 3:2931PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Park J, Mott M, Williams T, et al. (2014) Neurobiology of disease a single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. 34:10211–10218 Park J, Mott M, Williams T, et al. (2014) Neurobiology of disease a single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. 34:10211–10218
19.
Zurück zum Zitat Punga AR, Maj M, Lin S et al (2011) MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 33:890–898CrossRefPubMed Punga AR, Maj M, Lin S et al (2011) MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 33:890–898CrossRefPubMed
20.
Zurück zum Zitat DeChiara TM, Bowen DC, Valenzuela DM et al (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512CrossRefPubMed DeChiara TM, Bowen DC, Valenzuela DM et al (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512CrossRefPubMed
21.
Zurück zum Zitat Mihaylova V, Salih MaM, Mukhtar MM et al (2009) Refinement of the clinical phenotype in musk-related congenital myasthenic syndromes. Neurology 73:1926–1928CrossRefPubMed Mihaylova V, Salih MaM, Mukhtar MM et al (2009) Refinement of the clinical phenotype in musk-related congenital myasthenic syndromes. Neurology 73:1926–1928CrossRefPubMed
22.
Zurück zum Zitat Chevessier F, Faraut B, Ravel-Chapuis A et al (2005) Pathophysiological characterization of congenital myasthenic syndromes: the example of mutations in the MUSK gene. J Soc Biol 199:61–77CrossRefPubMed Chevessier F, Faraut B, Ravel-Chapuis A et al (2005) Pathophysiological characterization of congenital myasthenic syndromes: the example of mutations in the MUSK gene. J Soc Biol 199:61–77CrossRefPubMed
23.
Zurück zum Zitat Maselli Ra, Arredondo J, Cagney O et al (2010) Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 19:2370–2379PubMedCentralCrossRefPubMed Maselli Ra, Arredondo J, Cagney O et al (2010) Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 19:2370–2379PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Gallenmüller C, Felber WM, Dusl M et al (2014) Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 24:31–35PubMedCentralCrossRefPubMed Gallenmüller C, Felber WM, Dusl M et al (2014) Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 24:31–35PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Okada K, Inoue A, Okada M et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805CrossRefPubMed Okada K, Inoue A, Okada M et al (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805CrossRefPubMed
26.
Zurück zum Zitat Beeson D, Higuchi O, Palace J et al (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313:1975–1978CrossRefPubMed Beeson D, Higuchi O, Palace J et al (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313:1975–1978CrossRefPubMed
27.
Zurück zum Zitat Klein A, Pitt MC, McHugh JC et al (2013) DOK7 congenital myasthenic syndrome in childhood: early diagnostic clues in 23 children. Neuromuscul Disord 23:883–891CrossRefPubMed Klein A, Pitt MC, McHugh JC et al (2013) DOK7 congenital myasthenic syndrome in childhood: early diagnostic clues in 23 children. Neuromuscul Disord 23:883–891CrossRefPubMed
28.
Zurück zum Zitat Cossins J, Liu WW, Belaya K et al (2012) The spectrum of mutations that underlie the neuromuscular junction synaptopathy in DOK7 congenital myasthenic syndrome. Hum Mol Genet 21:3765–3775CrossRefPubMed Cossins J, Liu WW, Belaya K et al (2012) The spectrum of mutations that underlie the neuromuscular junction synaptopathy in DOK7 congenital myasthenic syndrome. Hum Mol Genet 21:3765–3775CrossRefPubMed
29.
Zurück zum Zitat Witting N, Vissing J (2014) Pharmacologic treatment of downstream of tyrosine kinase 7 congenital myasthenic syndrome. JAMA Neurol 71:350–354CrossRefPubMed Witting N, Vissing J (2014) Pharmacologic treatment of downstream of tyrosine kinase 7 congenital myasthenic syndrome. JAMA Neurol 71:350–354CrossRefPubMed
30.
Zurück zum Zitat Ohno K, Brengman J, Tsujino a, Engel aG (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci USA 95:9654–9659PubMedCentralCrossRefPubMed Ohno K, Brengman J, Tsujino a, Engel aG (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci USA 95:9654–9659PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Ito M, Suzuki Y, Okada T et al (2012) Protein-anchoring strategy for delivering acetylcholinesterase to the neuromuscular junction. Mol Ther 20:1384–1392PubMedCentralCrossRefPubMed Ito M, Suzuki Y, Okada T et al (2012) Protein-anchoring strategy for delivering acetylcholinesterase to the neuromuscular junction. Mol Ther 20:1384–1392PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Nakata T, Ito M, Azuma Y et al (2013) Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction. Hum Mutat 34:997–1004CrossRefPubMed Nakata T, Ito M, Azuma Y et al (2013) Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction. Hum Mutat 34:997–1004CrossRefPubMed
33.
Zurück zum Zitat Arredondo J, Lara M, Ng F et al (2013) COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum Genet 133:599–616PubMedCentralCrossRefPubMed Arredondo J, Lara M, Ng F et al (2013) COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum Genet 133:599–616PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Matlik HN, Milhem RM, Saadeldin IY et al (2014) Clinical and molecular analysis of a novel COLQ missense mutation causing congenital myasthenic syndrome in a Syrian family. Pediatr Neurol 51:165–169CrossRefPubMed Matlik HN, Milhem RM, Saadeldin IY et al (2014) Clinical and molecular analysis of a novel COLQ missense mutation causing congenital myasthenic syndrome in a Syrian family. Pediatr Neurol 51:165–169CrossRefPubMed
35.
Zurück zum Zitat Ohno K, Tsujino a, Brengman JM et al (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 98:2017–2022PubMedCentralCrossRefPubMed Ohno K, Tsujino a, Brengman JM et al (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci USA 98:2017–2022PubMedCentralCrossRefPubMed
36.
Zurück zum Zitat Schara U, Christen H-J, Durmus H et al (2010) Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations. Eur J Paediatr Neurol 14:326–333CrossRefPubMed Schara U, Christen H-J, Durmus H et al (2010) Long-term follow-up in patients with congenital myasthenic syndrome due to CHAT mutations. Eur J Paediatr Neurol 14:326–333CrossRefPubMed
37.
Zurück zum Zitat Shen X-M, Crawford TO, Brengman J et al (2011) Functional consequences and structural interpretation of mutations of human choline acetyltransferase. Hum Mutat 32:1259–1267PubMedCentralCrossRefPubMed Shen X-M, Crawford TO, Brengman J et al (2011) Functional consequences and structural interpretation of mutations of human choline acetyltransferase. Hum Mutat 32:1259–1267PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Zhang W, Coldefy A-S, Hubbard SR, Burden SJ (2011) Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem 286:40624–40630PubMedCentralCrossRefPubMed Zhang W, Coldefy A-S, Hubbard SR, Burden SJ (2011) Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem 286:40624–40630PubMedCentralCrossRefPubMed
40.
Zurück zum Zitat Ohkawara B, Cabrera-Serrano M, Nakata T et al (2013) LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated musk signaling in a position-specific manner. Hum Mol Genet 23:1856–1868PubMedCentralCrossRefPubMed Ohkawara B, Cabrera-Serrano M, Nakata T et al (2013) LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated musk signaling in a position-specific manner. Hum Mol Genet 23:1856–1868PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Richard P, Goillot E, Huze C et al (2009) Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 85:155–167PubMedCentralCrossRefPubMed Richard P, Goillot E, Huze C et al (2009) Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 85:155–167PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Maselli RA, Fernandez JM, Arredondo J et al (2012) LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet 131:1123–1135CrossRefPubMed Maselli RA, Fernandez JM, Arredondo J et al (2012) LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet 131:1123–1135CrossRefPubMed
43.
Zurück zum Zitat Nicole S, Chaouch A, Torbergsen T et al (2014) Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain 137:2429–2443CrossRefPubMed Nicole S, Chaouch A, Torbergsen T et al (2014) Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain 137:2429–2443CrossRefPubMed
45.
Zurück zum Zitat Martens K, Derua R, Meulemans S et al (2006) PREPL: a putative novel oligopeptidase propelled into the limelight. Biol Chem 387:879–883CrossRefPubMed Martens K, Derua R, Meulemans S et al (2006) PREPL: a putative novel oligopeptidase propelled into the limelight. Biol Chem 387:879–883CrossRefPubMed
46.
Zurück zum Zitat Régal L, Shen X-M, Selcen D et al (2014) PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology 82:1254–1260PubMedCentralCrossRefPubMed Régal L, Shen X-M, Selcen D et al (2014) PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology 82:1254–1260PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Kim M-H, Hersh LB (2004) The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2. J Biol Chem 279:12580–12587CrossRefPubMed Kim M-H, Hersh LB (2004) The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2. J Biol Chem 279:12580–12587CrossRefPubMed
48.
Zurück zum Zitat Radhakrishnan K, Baltes J, Creemers JWM, Schu P (2013) Trans-Golgi network morphology and sorting is regulated by prolyl-oligopeptidase-like protein PREPL and the AP-1 complex subunit μ1A. J Cell Sci 126:1155–1163CrossRefPubMed Radhakrishnan K, Baltes J, Creemers JWM, Schu P (2013) Trans-Golgi network morphology and sorting is regulated by prolyl-oligopeptidase-like protein PREPL and the AP-1 complex subunit μ1A. J Cell Sci 126:1155–1163CrossRefPubMed
49.
Zurück zum Zitat Jaeken J, Matthijs G (2001) Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet 2:129–151CrossRefPubMed Jaeken J, Matthijs G (2001) Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet 2:129–151CrossRefPubMed
50.
Zurück zum Zitat Wu X, Rush JS, Karaoglu D et al (2003) Deficiency of UDP-GlcNAc:Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) causes a novel congenital disorder of Glycosylation Type I. J Hum Mutat 22:144–150CrossRef Wu X, Rush JS, Karaoglu D et al (2003) Deficiency of UDP-GlcNAc:Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) causes a novel congenital disorder of Glycosylation Type I. J Hum Mutat 22:144–150CrossRef
51.
Zurück zum Zitat Thiel C, Schwarz M, Peng J et al (2003) A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem 278:22498–22505CrossRefPubMed Thiel C, Schwarz M, Peng J et al (2003) A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J Biol Chem 278:22498–22505CrossRefPubMed
52.
Zurück zum Zitat Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537CrossRefPubMed Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537CrossRefPubMed
53.
Zurück zum Zitat Velina Guergueltcheva, Jacqueline Palace, David Beeson HL (2011) Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. J Neurol Velina Guergueltcheva, Jacqueline Palace, David Beeson HL (2011) Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. J Neurol
54.
55.
Zurück zum Zitat Huh S-Y, Kim H-S, Jang H-J et al (2012) Limb-girdle myasthenia with tubular aggregates associated with novel GFPT1 mutations. Muscle Nerve 46:600–604CrossRefPubMed Huh S-Y, Kim H-S, Jang H-J et al (2012) Limb-girdle myasthenia with tubular aggregates associated with novel GFPT1 mutations. Muscle Nerve 46:600–604CrossRefPubMed
56.
57.
Zurück zum Zitat Zoltowska K, Webster R, Finlayson S et al (2013) Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum Mol Genet 22:2905–2913CrossRefPubMed Zoltowska K, Webster R, Finlayson S et al (2013) Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum Mol Genet 22:2905–2913CrossRefPubMed
58.
Zurück zum Zitat Bretthauer RK (2009) Structure, expression, and regulation of UDP-GlcNAc: dolichol phosphate GlcNAc-1-phosphate transferase (DPAGT1). Curr Drug Targets 10:477–482CrossRefPubMed Bretthauer RK (2009) Structure, expression, and regulation of UDP-GlcNAc: dolichol phosphate GlcNAc-1-phosphate transferase (DPAGT1). Curr Drug Targets 10:477–482CrossRefPubMed
59.
Zurück zum Zitat Merlie JP, Sebbane R, Tzartos S, Lindstrom J (1982) Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J Biol Chem 257:2694–2701PubMed Merlie JP, Sebbane R, Tzartos S, Lindstrom J (1982) Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J Biol Chem 257:2694–2701PubMed
61.
Zurück zum Zitat Basiri K, Belaya K, Liu WW et al (2013) Clinical features in a large Iranian family with a limb-girdle congenital myasthenic syndrome due to a mutation in DPAGT1. Neuromuscul Disord 23:469–472PubMedCentralCrossRefPubMed Basiri K, Belaya K, Liu WW et al (2013) Clinical features in a large Iranian family with a limb-girdle congenital myasthenic syndrome due to a mutation in DPAGT1. Neuromuscul Disord 23:469–472PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Jackson BJ, Kukuruzinska MA, Robbins P (1993) Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: the alg2 mutation. Glycobiology 3:357–364CrossRefPubMed Jackson BJ, Kukuruzinska MA, Robbins P (1993) Biosynthesis of asparagine-linked oligosaccharides in Saccharomyces cerevisiae: the alg2 mutation. Glycobiology 3:357–364CrossRefPubMed
63.
Zurück zum Zitat Lu J, Takahashi T, Ohoka A et al (2012) Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 22:504–516CrossRefPubMed Lu J, Takahashi T, Ohoka A et al (2012) Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 22:504–516CrossRefPubMed
64.
Zurück zum Zitat Monies DM, Al-Hindi HN, Al-Muhaizea Ma et al (2014) Clinical and pathological heterogeneity of a congenital disorder of glycosylation manifesting as a myasthenic/myopathic syndrome. Neuromuscul Disord 24:353–359CrossRefPubMed Monies DM, Al-Hindi HN, Al-Muhaizea Ma et al (2014) Clinical and pathological heterogeneity of a congenital disorder of glycosylation manifesting as a myasthenic/myopathic syndrome. Neuromuscul Disord 24:353–359CrossRefPubMed
65.
Zurück zum Zitat Rodriguez Cruz P, Sewry C, Beeson D et al (2014) Science direct congenital myopathies with secondary neuromuscular transmission defects.A case report and review of the literature. Neuromuscul Disord. doi:10.1016/j.nmd.2014.07.005 Rodriguez Cruz P, Sewry C, Beeson D et al (2014) Science direct congenital myopathies with secondary neuromuscular transmission defects.A case report and review of the literature. Neuromuscul Disord. doi:10.​1016/​j.​nmd.​2014.​07.​005
66.
Zurück zum Zitat Illingworth M, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine Illingworth M, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigimine
67.
Zurück zum Zitat Munot P, Lashley D, Jungbluth H et al (2010) Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord 20:796–800CrossRefPubMed Munot P, Lashley D, Jungbluth H et al (2010) Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord 20:796–800CrossRefPubMed
68.
Zurück zum Zitat Robb Sa, Sewry Ca, Dowling JJ et al (2011) Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 21:379–386CrossRefPubMed Robb Sa, Sewry Ca, Dowling JJ et al (2011) Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscul Disord 21:379–386CrossRefPubMed
69.
Zurück zum Zitat Liewluck T, Shen X-M, Milone M, Engel AG (2012) Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscul Disord 21:387–395CrossRef Liewluck T, Shen X-M, Milone M, Engel AG (2012) Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscul Disord 21:387–395CrossRef
70.
Zurück zum Zitat Gibbs EM, Clarke NF, Rose K et al (2013) Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl) 91:727–737CrossRef Gibbs EM, Clarke NF, Rose K et al (2013) Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl) 91:727–737CrossRef
71.
Zurück zum Zitat Servais L, Baudoin H, Zehrouni K et al (2013) Pregnancy in congenital myasthenic syndrome. J Neurol 260:815–819CrossRefPubMed Servais L, Baudoin H, Zehrouni K et al (2013) Pregnancy in congenital myasthenic syndrome. J Neurol 260:815–819CrossRefPubMed
72.
Zurück zum Zitat Lorenzoni PJ, Scola RH, Kay CSK et al (2013) Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation. J Neurol Sci 331:155–157CrossRefPubMed Lorenzoni PJ, Scola RH, Kay CSK et al (2013) Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation. J Neurol Sci 331:155–157CrossRefPubMed
73.
Zurück zum Zitat Burke G, Hiscock A, Klein A et al (2013) Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 23:170–175CrossRefPubMed Burke G, Hiscock A, Klein A et al (2013) Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 23:170–175CrossRefPubMed
74.
Zurück zum Zitat Lashley D, Palace J, Jayawant S et al (2010) Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology 74:1517–1523PubMedCentralCrossRefPubMed Lashley D, Palace J, Jayawant S et al (2010) Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology 74:1517–1523PubMedCentralCrossRefPubMed
75.
Zurück zum Zitat Sadeh M, Xin-Ming SEA (2012) Beneficial effect of albuterol in CMS with epsilon subunit mutations. Muscle Nerve 44:289–291CrossRef Sadeh M, Xin-Ming SEA (2012) Beneficial effect of albuterol in CMS with epsilon subunit mutations. Muscle Nerve 44:289–291CrossRef
76.
Zurück zum Zitat Finlayson S, Palace J, Belaya K et al (2013) Clinical features of congenital myasthenic syndrome due to mutations in DPAGT1. J Neurol Neurosurg Psychiatry 84:1119–1125CrossRefPubMed Finlayson S, Palace J, Belaya K et al (2013) Clinical features of congenital myasthenic syndrome due to mutations in DPAGT1. J Neurol Neurosurg Psychiatry 84:1119–1125CrossRefPubMed
77.
Zurück zum Zitat Liewluck T, Selcen D, Engel AG (2011) Beneficial effects of Albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve 44:789–794PubMedCentralCrossRefPubMed Liewluck T, Selcen D, Engel AG (2011) Beneficial effects of Albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve 44:789–794PubMedCentralCrossRefPubMed
78.
Zurück zum Zitat Wargon I, Richard P, Kuntzer T et al (2012) Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord 22:318–324CrossRefPubMed Wargon I, Richard P, Kuntzer T et al (2012) Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord 22:318–324CrossRefPubMed
79.
Zurück zum Zitat Mihaylova V, Müller JS, Vilchez JJ et al (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131:747–759CrossRefPubMed Mihaylova V, Müller JS, Vilchez JJ et al (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131:747–759CrossRefPubMed
80.
Zurück zum Zitat Guven A, Demirci M, Anlar B (2012) Recurrent COLQ mutation in congenital myasthenic syndrome. Pediatr Neurol 46:253–256CrossRefPubMed Guven A, Demirci M, Anlar B (2012) Recurrent COLQ mutation in congenital myasthenic syndrome. Pediatr Neurol 46:253–256CrossRefPubMed
81.
Zurück zum Zitat Duran GS, Uzunhan TA, Ekici B et al (2013) Severe scoliosis in a patient with COLQ mutation and congenital myasthenic syndrome: a clue for diagnosis. Acta Neurol Belg 113:531–532CrossRefPubMed Duran GS, Uzunhan TA, Ekici B et al (2013) Severe scoliosis in a patient with COLQ mutation and congenital myasthenic syndrome: a clue for diagnosis. Acta Neurol Belg 113:531–532CrossRefPubMed
82.
Zurück zum Zitat Bestue-Cardiel M, de Cabezón-Alvarez a Sáenz, Capablo-Liesa JL et al (2005) Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology 65:144–146CrossRefPubMed Bestue-Cardiel M, de Cabezón-Alvarez a Sáenz, Capablo-Liesa JL et al (2005) Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology 65:144–146CrossRefPubMed
83.
Zurück zum Zitat Choi K-R, Berrera M, Reischl M et al (2012) Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J Cell Sci 125:714–723CrossRefPubMed Choi K-R, Berrera M, Reischl M et al (2012) Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J Cell Sci 125:714–723CrossRefPubMed
Metadaten
Titel
Inherited disorders of the neuromuscular junction: an update
verfasst von
Pedro M. Rodríguez Cruz
Jacqueline Palace
David Beeson
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 11/2014
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-014-7520-7

Weitere Artikel der Ausgabe 11/2014

Journal of Neurology 11/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.