Skip to main content
Erschienen in: Der Ophthalmologe 1/2016

01.02.2016 | Leitthema

Comparative glaucomatous diagnosis using macular optical coherence tomography and perimetry with centrally condensed stimuli

English version

verfasst von: Dr. A. Sturm, Prof. Dr. W. Noske

Erschienen in: Die Ophthalmologie | Sonderheft 1/2016

Einloggen, um Zugang zu erhalten

Abstract

The presentation and measurement of the internal retinal layers by current optical coherence tomography (OCT) instruments allow a precise topographic localization of macular glaucomatous damage. Ganglion cell analysis in particular can reveal slight central defects and can effectively be correlated with perimetric strategies with centrally condensed stimuli, so that small glaucomatous defects can be confirmed earlier and more confidently. Progression can also be verified in the early stages of the disease as enlargement and deepening of small localized defects. Macular OCT (mOCT) cannot sufficiently detect peripheral glaucomatous defects and may be impaired by macular pathologies; therefore, mOCT should be combined with other morphometric examinations. In order to take advantage of the technical capabilities of current OCT devices appropriate perimetric strategies should also be applied. As the algorithms for documentation and evaluation of the results of current OCT instruments are far less advanced than the technical capabilities, OCT results still have to be visually scrutinized together with the visual field results to benefit from the technical possibilities provided by modern OCT devices.
Literatur
1.
Zurück zum Zitat Aulhorn E, Harms M (1967) Early visual field defects in glaucoma. In: Leydhecke W (ed) Glaucoma, tutzing symposium. Karger, Basel, pp 151–186 Aulhorn E, Harms M (1967) Early visual field defects in glaucoma. In: Leydhecke W (ed) Glaucoma, tutzing symposium. Karger, Basel, pp 151–186
2.
Zurück zum Zitat Aulhorn E, Karmeyer H (1977) Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 14:75–83 Aulhorn E, Karmeyer H (1977) Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 14:75–83
3.
Zurück zum Zitat Schiefer U, Papageorgiou E, Sample PA et al (2010) Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci 51:5685–5689PubMedCentralCrossRefPubMed Schiefer U, Papageorgiou E, Sample PA et al (2010) Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements. Invest Ophthalmol Vis Sci 51:5685–5689PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Hood DC, Raza AS, de Moraes VGV et al (2013) Glaucomatous damage of the macula. Progr Retin Eye Res 32:1–21CrossRef Hood DC, Raza AS, de Moraes VGV et al (2013) Glaucomatous damage of the macula. Progr Retin Eye Res 32:1–21CrossRef
5.
Zurück zum Zitat De Moraes CGV, Liebmann JM, Ritch R et al (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840PubMedCentralCrossRefPubMed De Moraes CGV, Liebmann JM, Ritch R et al (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25CrossRefPubMed Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25CrossRefPubMed
7.
Zurück zum Zitat Drasdo N, Millican CL, Katholi CR et al (2007) The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 47:2901–2911PubMedCentralCrossRefPubMed Drasdo N, Millican CL, Katholi CR et al (2007) The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res 47:2901–2911PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Curcio CA, Messinger JD, Sloan KR et al (2011) Human chorioretinal layer thickness measured in macula-wide, high resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954PubMedCentralCrossRefPubMed Curcio CA, Messinger JD, Sloan KR et al (2011) Human chorioretinal layer thickness measured in macula-wide, high resolution histologic sections. Invest Ophthalmol Vis Sci 52:3943–3954PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Sigelmann J, Ozanics V (1985) Retina. In: Duane TD, Jaeger EA (eds) Biomedical foundations of ophthalmology, Vol 1. Harper & Row, Philadelphia, S 1–66 (Chap. 19) Sigelmann J, Ozanics V (1985) Retina. In: Duane TD, Jaeger EA (eds) Biomedical foundations of ophthalmology, Vol 1. Harper & Row, Philadelphia, S 1–66 (Chap. 19)
10.
Zurück zum Zitat Wabbels BK, Diehm S, Kolling G (2005) Continuous light increment perimetry compared to full threshold strategy in glaucoma. Eur J Ophthalmol 15:722–729PubMed Wabbels BK, Diehm S, Kolling G (2005) Continuous light increment perimetry compared to full threshold strategy in glaucoma. Eur J Ophthalmol 15:722–729PubMed
11.
Zurück zum Zitat Hood DC, Nguyen M, Ehrlich AC et al (2014) A test model of glaucomatous damage of the macula with high-density perimetry: implications fo the locations of visual field test points. Tans Vis Sci Technol 3:5CrossRef Hood DC, Nguyen M, Ehrlich AC et al (2014) A test model of glaucomatous damage of the macula with high-density perimetry: implications fo the locations of visual field test points. Tans Vis Sci Technol 3:5CrossRef
12.
Zurück zum Zitat Traynis I, Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC (2014) Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol 132:291–297PubMedCentralCrossRefPubMed Traynis I, Moraes CG, Raza AS, Liebmann JM, Ritch R, Hood DC (2014) Prevalence and nature of early glaucomatous defects in the central 10° of the visual field. JAMA Ophthalmol 132:291–297PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Park SC, Kung Y, Su D et al (2013) Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Opthalmology 120:1546–1550CrossRef Park SC, Kung Y, Su D et al (2013) Parafoveal scotoma progression in glaucoma: humphrey 10-2 versus 24-2 visual field analysis. Opthalmology 120:1546–1550CrossRef
14.
Zurück zum Zitat De Moraes CGV, Liebmann JM, Ritch R, Hood DC (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840PubMedCentralCrossRefPubMed De Moraes CGV, Liebmann JM, Ritch R, Hood DC (2012) Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol 130:833–840PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Leung CK, Ye C, Weinreb RN et al (2013) Impact of age-related change of retinal nerve fiber layer and macular thickness on evaluation of glaucoma progression. Ophthalmology 120:2485–92CrossRefPubMed Leung CK, Ye C, Weinreb RN et al (2013) Impact of age-related change of retinal nerve fiber layer and macular thickness on evaluation of glaucoma progression. Ophthalmology 120:2485–92CrossRefPubMed
16.
Zurück zum Zitat Matlach J, Wagner M, Malzahn U et al (2014) Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Invest Opthalmol Vis Sci 55:6536–6546CrossRef Matlach J, Wagner M, Malzahn U et al (2014) Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Invest Opthalmol Vis Sci 55:6536–6546CrossRef
17.
Zurück zum Zitat Bussel II, Wollstein G, Schumann JS (2014) OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 98(Suppl 2):ii15–ii19PubMedCentralCrossRefPubMed Bussel II, Wollstein G, Schumann JS (2014) OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 98(Suppl 2):ii15–ii19PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Naghizadeh F, Garas A, Vargha P et al (2014) Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J Glaucoma 23:195–198CrossRefPubMed Naghizadeh F, Garas A, Vargha P et al (2014) Detection of early glaucomatous progression with different parameters of the RTVue optical coherence tomograph. J Glaucoma 23:195–198CrossRefPubMed
19.
Zurück zum Zitat Tonagel F, Voykov B, Schiefer U (2012) Conventional perimetry. Antiquated or indispensable for functional glaucoma diagnostics? Ophthalmologe 109:325–336CrossRefPubMed Tonagel F, Voykov B, Schiefer U (2012) Conventional perimetry. Antiquated or indispensable for functional glaucoma diagnostics? Ophthalmologe 109:325–336CrossRefPubMed
20.
Zurück zum Zitat Harwerth RS, Quigley HA (2006) Visual field defects and retinal ganglion cell losses in human glaucoma. Arch Opthalmol 124:853–859CrossRef Harwerth RS, Quigley HA (2006) Visual field defects and retinal ganglion cell losses in human glaucoma. Arch Opthalmol 124:853–859CrossRef
21.
Zurück zum Zitat Kawaguchi C, Nakatani Y, Okhubo S et al (2014) Structural and functional assessment by hemisheric asymmetry testing of the macular region in preperimetric glaucoma. Jpn J Ophthalmol 58:197–204CrossRefPubMed Kawaguchi C, Nakatani Y, Okhubo S et al (2014) Structural and functional assessment by hemisheric asymmetry testing of the macular region in preperimetric glaucoma. Jpn J Ophthalmol 58:197–204CrossRefPubMed
22.
Zurück zum Zitat Lee SY, Jeoung YW, Park KH et al (2015) Macular ganglion cell imaging study: interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol 159:315–323CrossRefPubMed Lee SY, Jeoung YW, Park KH et al (2015) Macular ganglion cell imaging study: interocular symmetry of ganglion cell-inner plexiform layer thickness in normal healthy eyes. Am J Ophthalmol 159:315–323CrossRefPubMed
23.
Zurück zum Zitat Hood DC, Slobodnick A, Raza AS et al (2014) Early glaucoma involves both deep local and shallow widespread retinal nerve fibrer damage of the macular region. Invest Ophthalmol Vis Sci 55:632–649PubMedCentralCrossRefPubMed Hood DC, Slobodnick A, Raza AS et al (2014) Early glaucoma involves both deep local and shallow widespread retinal nerve fibrer damage of the macular region. Invest Ophthalmol Vis Sci 55:632–649PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Raza AS, Zhang X, De Moraes CGV et al (2014) Improving glaucoma detection using spatially corrrespondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Invest Ophthalmol Vis Sci 55:612–624PubMedCentralCrossRefPubMed Raza AS, Zhang X, De Moraes CGV et al (2014) Improving glaucoma detection using spatially corrrespondent clusters of damage and by combining standard automated perimetry and optical coherence tomography. Invest Ophthalmol Vis Sci 55:612–624PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Malik R, Swanson WH, Garway-Heath DF (2012) The ‘structure-function’ relationship in glaucoma – past thinking and current concepts. Clin Experiment Ophthalmol 40:369–380PubMedCentralCrossRefPubMed Malik R, Swanson WH, Garway-Heath DF (2012) The ‘structure-function’ relationship in glaucoma – past thinking and current concepts. Clin Experiment Ophthalmol 40:369–380PubMedCentralCrossRefPubMed
26.
Metadaten
Titel
Comparative glaucomatous diagnosis using macular optical coherence tomography and perimetry with centrally condensed stimuli
English version
verfasst von
Dr. A. Sturm
Prof. Dr. W. Noske
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Ophthalmologie / Ausgabe Sonderheft 1/2016
Print ISSN: 2731-720X
Elektronische ISSN: 2731-7218
DOI
https://doi.org/10.1007/s00347-015-0104-9

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.