Semin Musculoskelet Radiol 2008; 12(3): 266-280
DOI: 10.1055/s-0028-1083109
© Thieme Medical Publishers

Novel Contrast Mechanisms at 3 Tesla and 7 Tesla

Ravinder R. Regatte1 , Mark E. Schweitzer1
  • 1Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York
Further Information

Publication History

Publication Date:
10 October 2008 (online)

ABSTRACT

Osteoarthritis (OA) is the most common musculoskeletal degenerative disease, affecting millions of people. Although OA has been considered primarily a cartilage disorder associated with focal cartilage degeneration, it is accompanied by well-known changes in subchondral and trabecular bone, including sclerosis and osteophyte formation. The exact cause of OA initiation and progression remains under debate, but OA typically first affects weightbearing joints such as the knee. Magnetic resonance imaging (MRI) has been recognized as a potential tool for quantitative assessment of cartilage abnormalities due to its excellent soft tissue contrast. Over the last two decades, several new MR biochemical imaging methods have been developed to characterize the disease process and possibly predict the progression of knee OA. These new MR biochemical methods play an important role not only for diagnosis of disease at an early stage, but also for their potential use in monitoring outcome of various drug therapies (success or failure). Recent advances in multicoil radiofrequency technology and high field systems (3 T and above) significantly improve the sensitivity and specificity of imaging studies for the diagnosis of musculoskeletal disorders. The current state-of-the-art MR imaging methods are briefly reviewed for the quantitative biochemical and functional imaging assessment of musculoskeletal systems.

REFERENCES

  • 1 Felson D T. Clinical practice. Osteoarthritis of the knee.  N Engl J Med. 2006;  354 841-848
  • 2 Felson D T, Niu J, Guermazi A et al.. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging.  Arthritis Rheum. 2007;  56 2986-2992
  • 3 Felson D T, Kim Y J. The futility of current approaches to chondroprotection.  Arthritis Rheum. 2007;  56 1378-1383
  • 4 Felson D T. Risk factors for osteoarthritis: understanding joint vulnerability.  Clin Orthop Relat Res. 2004;  S16-S21
  • 5 Brandt H J, Ma K D. Osteoarthritis: Diagnosis and Medical/Surgical Management. Philadelphia, Pa; WB Saunders 1992
  • 6 Sharma L, Song J, Felson D T, Cahue S, Shamiyeh E, Dunlop D D. The role of knee alignment in disease progression and functional decline in knee osteoarthritis.  JAMA. 2001;  286 188-195
  • 7 Sharma L, Chang A. Overweight: advancing our understanding of its impact on the knee and the hip.  Ann Rheum Dis. 2007;  66 141-142
  • 8 Sharma L. Nonpharmacologic management of osteoarthritis.  Curr Opin Rheumatol. 2002;  14 603-607
  • 9 Sharma L. Local factors in osteoarthritis.  Curr Opin Rheumatol. 2001;  13 441-446
  • 10 Nevitt M C, Sharma L. OMERACT workshop radiography session 1.  Osteoarthritis Cartilage. 2006;  14(suppl A) A4-A9
  • 11 Buckland-Wright J C, Ward R J, Peterfy C, Mojcik C F, Leff R L. Reproducibility of the semiflexed (metatarsophalangeal) radiographic knee position and automated measurements of medial tibiofemoral joint space width in a multicenter clinical trial of knee osteoarthritis.  J Rheumatol. 2004;  31 1588-1597
  • 12 Le Graverand M P, Mazzuca S, Lassere M, Guermazi A, Pickering E, Brandt K et al.. Assessment of the radioanatomic positioning of the osteoarthritic knee in serial radiographs: comparison of three acquisition techniques.  Osteoarthritis Cartilage. 2006;  14(suppl A) A37-A43
  • 13 Peterfy C, Kothari M. Imaging osteoarthritis: magnetic resonance imaging versus X-ray.  Curr Rheumatol Rep. 2006;  8 16-21
  • 14 Gale D R, Chaisson C E, Totterman S M, Schwartz R K, Gale M E, Felson D. Meniscal subluxation: association with osteoarthritis and joint space narrowing.  Osteoarthritis Cartilage. 1999;  7 526-532
  • 15 Hunter D J, Zhang Y Q, Tu X et al.. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?.  Arthritis Rheum. 2006;  54 2488-2495
  • 16 Bashir A, Gray M L, Burstein D. Gd-DTPA2- as a measure of cartilage degradation.  Magn Reson Med. 1996;  36 665-673
  • 17 Bashir A, Gray M L, Boutin R D, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)2--enhanced MR imaging.  Radiology. 1997;  205 551-558
  • 18 Mosher T J, Dardzinski B J, Smith M B. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T.  Radiology. 2000;  214 259-266
  • 19 Reddy R, Insko E K, Noyszewski E A, Dandora R, Kneeland J B, Leigh J S. Sodium MRI of human articular cartilage in vivo.  Magn Reson Med. 1998;  39 697-701
  • 20 Regatte R R, Akella S V, Wheaton A J et al.. 3D–T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects.  Acad Radiol. 2004;  11 741-749
  • 21 Regatte R R, Akella S V, Borthakur A, Kneeland J B, Reddy R. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience.  Radiology. 2003;  229 269-274
  • 22 Li X, Benjamin Ma C, Link T M et al.. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI.  Osteoarthritis Cartilage. 2007;  15 789-797
  • 23 Li X, Han E T, Busse R F, Majumdar S. In vivo T(1rho) mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS).  Magn Reson Med. 2008;  59 298-307
  • 24 Li X, Han E T, Ma C B, Link T M, Newitt D C, Majumdar S. In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis.  Magn Reson Med. 2005;  54 929-936
  • 25 Pakin S K, Cavalcanti C, La Rocca R, Schweitzer M E, Regatte R R. Ultra-high-field MRI of knee joint at 7.0T: preliminary experience.  Acad Radiol. 2006;  13 1135-1142
  • 26 Pakin S K, Xu J, Schweitzer M E, Regatte R R. Rapid 3D–T1rho mapping of the knee joint at 3.0T with parallel imaging.  Magn Reson Med. 2006;  56 563-571
  • 27 Pakin S K, Schweitzer M E, Regatte R R. 3D–T1rho quantitation of patellar cartilage at 3.0T.  J Magn Reson Imaging. 2006;  24 1357-1363
  • 28 Gold G E, Hargreaves B A, Reeder S B et al.. Balanced SSFP imaging of the musculoskeletal system.  J Magn Reson Imaging. 2007;  25 270-278
  • 29 Gold G E, Busse R F, Beehler C et al.. Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience.  AJR Am J Roentgenol. 2007;  188 1287-1293
  • 30 Gold G E, Reeder S B, Yu H et al.. Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession—initial experience.  Radiology. 2006;  240 546-551
  • 31 Gold G E, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast.  AJR Am J Roentgenol. 2004;  183 343-351
  • 32 Gold G E. Dynamic and functional imaging of the musculoskeletal system.  Semin Musculoskelet Radiol. 2003;  7 245-248
  • 33 Dardzinski B J, Mosher T J, Li S Z, VanSlyke M A, Smith M B. Spatial variation of T2 in human articular cartilage.  Radiology. 1997;  205 546-550
  • 34 David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis.  Magn Reson Imaging. 2004;  22 673-682
  • 35 Eckstein F, Mosher T, Hunter D. Imaging of knee osteoarthritis: data beyond the beauty.  Curr Opin Rheumatol. 2007;  19 435-443
  • 36 Eckstein F, Burstein D, Link T M. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis.  NMR Biomed. 2006;  19 822-854
  • 37 Eckstein F, Ateshian G, Burgkart R et al.. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis.  Osteoarthritis Cartilage. 2006;  14 974-983
  • 38 Eckstein F, Hudelmaier M, Wirth W et al.. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative.  Ann Rheum Dis. 2006;  65 433-441
  • 39 Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage.  J Anat. 2006;  208 491-512
  • 40 Eckstein F, Kunz M, Schutzer M et al.. Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative.  Osteoarthritis Cartilage. 2007;  15 1326-1332
  • 41 Ling W, Regatte R R, Schweitzer M E, Jerschow A. Characterization of bovine patellar cartilage by NMR.  NMR Biomed. 2008;  21(3) 289-295
  • 42 Ling W, Regatte R R, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST).  Proc Natl Acad Sci U S A. 2008;  105(7) 2266-2270
  • 43 Link T M, Sell C A, Masi J N et al.. 3.0 vs 1.5T MRI in the detection of focal cartilage pathology—ROC analysis in an experimental model.  Osteoarthritis Cartilage. 2006;  14(1) 63-70
  • 44 Link T M, Stahl R, Woertler K. Cartilage imaging: motivation, techniques, current and future significance.  Eur Radiol. 2007;  17 1135-1146
  • 45 Wheaton A J, Borthakur A, Kneeland J B, Regatte R R, Akella S V, Reddy R. In vivo quantification of T1rho using a multislice spin-lock pulse sequence.  Magn Reson Med. 2004;  52 1453-1458
  • 46 Wheaton A J, Borthakur A, Charagundla S R, Reddy R. Pulse sequence for multislice T1rho-weighted MRI.  Magn Reson Med. 2004;  51 362-369
  • 47 Wheaton A J, Borthakur A, Dodge G R, Kneeland J B, Schumacher H R, Reddy R. Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis.  Acad Radiol. 2004;  11 21-28
  • 48 Wheaton A J, Borthakur A, Shapiro E M et al.. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study.  Radiology. 2004;  231 900-905
  • 49 Witschey II W R, Borthakur A, Elliott M A et al.. Artifacts in T1 rho-weighted imaging: compensation for B(1) and B(0) field imperfections.  J Magn Reson. 2007;  186 75-85
  • 50 Witschey W R, Borthakur A, Elliott M A et al.. Compensation for spin-lock artifacts using an off-resonance rotary echo in T1rho off-weighted imaging.  Magn Reson Med. 2007;  57 2-7
  • 51 McKenzie C A, Williams A, Prasad P V, Burstein D. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T.  J Magn Reson Imaging. 2006;  24 928-933
  • 52 Wang L, Schweitzer M E, Padua A, Regatte R R. Rapid 3D-T(1) mapping of cartilage with variable flip angle and parallel imaging at 3.0T.  J Magn Reson Imaging. 2008;  27 154-161
  • 53 Reeder S B, McKenzie C A, Pineda A R et al.. Water-fat separation with IDEAL gradient-echo imaging.  J Magn Reson Imaging. 2007;  25 644-652
  • 54 Reeder S B, Pelc N J, Alley M T, Gold G E. Rapid MR imaging of articular cartilage with steady-state free precession and multipoint fat-water separation.  AJR Am J Roentgenol. 2003;  180 357-362
  • 55 Shapiro E M, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures fixed charge density in articular cartilage.  Magn Reson Med. 2002;  47 284-291
  • 56 Mlynarik V, Szomolanyi P, Toffanin R, Vittur F, Trattnig S. Transverse relaxation mechanisms in articular cartilage.  J Magn Reson. 2004;  169 300-307
  • 57 Mlynarik V, Sulzbacher I, Bittsansky M, Fuiko R, Trattnig S. Investigation of apparent diffusion constant as an indicator of early degenerative disease in articular cartilage.  J Magn Reson Imaging. 2003;  17 440-444
  • 58 Mlynarik V, Degrassi A, Toffanin R, Vittur F, Cova M, Pozzi-Mucelli R S. Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy.  Magn Reson Imaging. 1996;  14 435-442
  • 59 Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI.  J Magn Reson Imaging. 1997;  7 887-894
  • 60 Xia Y. Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14-μm resolution.  Magn Reson Med. 1998;  39 941-949
  • 61 Xia Y, Moody J B, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (microMRI) study.  Magn Reson Med. 2002;  48 460-469
  • 62 Xia Y, Moody J B, Alhadlaq H, Hu J. Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution.  J Magn Reson Imaging. 2003;  17 365-374
  • 63 Bloch F, Hansen W W, Packard M. Nuclear induction.  Phys Rev. 1946;  69 127
  • 64 Blumenkrantz G, Li X, Han E T et al.. A feasibility study of in vivo T1rho imaging of the intervertebral disc.  Magn Reson Imaging. 2006;  24 1001-1007
  • 65 Burstein D. MRI for development of disease-modifying osteoarthritis drugs.  NMR Biomed. 2006;  19 669-680
  • 66 Burstein D, Bashir A, Gray M L. MRI techniques in early stages of cartilage disease.  Invest Radiol. 2000;  35 622-638
  • 67 Kimelman T, Vu A, Storey P, McKenzie C, Burstein D, Prasad P. Three-dimensional T1 mapping for dGEMRIC at 3.0 T using the Look Locker method.  Invest Radiol. 2006;  41 198-203
  • 68 Roos E M, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis.  Arthritis Rheum. 2005;  52 3507-3514
  • 69 Williams A, Mikulis B, Krishnan N, Gray M, McKenzie C, Burstein D. Suitability of T(1Gd) as the dGEMRIC index at 1.5T and 3.0T.  Magn Reson Med. 2007;  58 830-834
  • 70 Williams A, Sharma L, McKenzie C A, Prasad P V, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment.  Arthritis Rheum. 2005;  52 3528-3535
  • 71 Lammentausta E, Silvast T S, Narvainen J, Jurvelin J S, Nieminen M T, Grohn O HT. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.  Phys Med Biol. 2008;  53 543-555
  • 72 Lammentausta E, Kiviranta P, Toyras J et al.. Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration.  Osteoarthritis Cartilage. 2007;  15 1149-1157
  • 73 Lammentausta E, Kiviranta P, Nissi M J et al.. T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: relationships with tissue mechanical properties.  J Orthop Res. 2006;  24 366-374
  • 74 Recht M P, Resnick D. MR imaging of articular cartilage: current status and future directions.  AJR Am J Roentgenol. 1994;  163 283-290
  • 75 Recht M P, Piraino D W, Paletta G A, Schils J P, Belhobek G H. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities.  Radiology. 1996;  198 209-212
  • 76 Recht M P, Resnick D. Magnetic resonance imaging of articular cartilage: an overview.  , [Review] [69 refs] Top Magn Reson Imaging. 1998;  9 328-336
  • 77 Huber M, Trattnig S, Lintner F. Anatomy, biochemistry, and physiology of articular cartilage.  Invest Radiol. 2000;  35 573-580
  • 78 Huster D, Schiller J, Arnold K. Dynamics of collagen in articular cartilage studied by solid-state NMR methods.  Methods Mol Med. 2004;  101 303-318
  • 79 Hodgeson R J, Carpenter T A, Hall L D. Articular Cartilage and Osteoarthritis. New York; Raven 1991
  • 80 Venn M, Maroudas A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition.  Ann Rheum Dis. 1977;  36 121-129
  • 81 Carney S L, Muir H. The structure and function of cartilage proteoglycans.  Physiol Rev. 1988;  68 858-910
  • 82 Mankin H J, Brandt K D. Biochemistry and metabolism of articular cartilage in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ Osteoarthritis: Diagnosis and Medical/Surgical Management. Philadelphia, Pa; WB Saunders 1992: 109-154
  • 83 Roughley P J, Lee E R. Cartilage proteoglycans: structure and potential functions.  Microsc Res Tech. 1994;  28 385-397
  • 84 Moskowitz R W, Howell D S, Goldberg V M, Mankin H J. Osteoarthritis: Diagnosis and Medical/Surgical Management. Philadelphia, Pa; WB Saunders 1992: 761
  • 85 Xia Y, Farquhar T, Burton-Wurster N, Ray E, Jelinski L W. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging.  Magn Reson Med. 1994;  31 273-282
  • 86 Mosher T J. Musculoskeletal imaging at 3T: current techniques and future applications.  Magn Reson Imaging Clin N Am. 2006;  14 63-76
  • 87 Mosher T J, Smith H E, Collins C et al.. Change in knee cartilage T2 at MR imaging after running: a feasibility study.  Radiology. 2005;  234 245-249
  • 88 Mosher T J, Dardzinski B J. Cartilage MRI T2 relaxation time mapping: overview and applications.  Semin Musculoskelet Radiol. 2004;  8 355-368
  • 89 Eckstein F, Gavazzeni A, Sittek H et al.. Determination of knee joint cartilage thickness using three- dimensional magnetic resonance chondro-crassometry (3D MR-CCM).  Magn Reson Med. 1996;  36 256-265
  • 90 Eckstein F, Sittek H, Gavazzeni A et al.. Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination of articular cartilage thickness.  Magn Reson Med. 1996;  35 89-96
  • 91 Eckstein F, Schnier M, Haubner M et al.. Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging.  Clin Orthop Relat Res. 1998;  137-148
  • 92 Eckstein F, Adam C, Sittek H et al.. Non-invasive determination of cartilage thickness throughout joint surfaces using magnetic resonance imaging.  J Biomech. 1997;  30 285-289
  • 93 Eckstein F, Englmeier K H. Quantitative image analysis: software systems in drug development trials.  Drug Discov Today. 2003;  8 922-923
  • 94 Eckstein F, Buck R J, Wyman B T et al.. Quantitative imaging of cartilage morphology at 3.0 Tesla in the presence of gadopentetate dimeglumine (Gd-DTPA).  Magn Reson Med. 2007;  58 402-406
  • 95 Eckstein F, Kunz M, Hudelmaier M et al.. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the Osteoarthritis Initiative.  Magn Reson Med. 2007;  57 448-454
  • 96 Waterton J C, Solloway S, Foster J E et al.. Diurnal variation in the femoral articular cartilage of the knee in young adult humans.  Magn Reson Med. 2000;  43 126-132
  • 97 Otterness I G, Eckstein F. Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight.  Osteoarthritis Cartilage. 2007;  15 666-672
  • 98 Wang Y, Ding C, Wluka A E et al.. Factors affecting progression of knee cartilage defects in normal subjects over 2 years.  Rheumatology. 2006;  45 79-84
  • 99 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland J B, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.  NMR Biomed. 2006;  19 781-821
  • 100 Gold G E, McCauley T R, Gray M L, Disler D G. What's new in cartilage?.  Radiographics. 2003;  23 1227-1242
  • 101 Gold G E, Burstein D, Dardzinski B, Lang P, Boada F, Mosher T. MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers.  Osteoarthritis Cartilage. 2006;  14(suppl A) A76-A86
  • 102 Tiderius C, Hori M, Williams A et al.. dGEMRIC as a function of BMI.  Osteoarthritis Cartilage. 2006;  14 1091-1097
  • 103 Bashir A, Gray M L, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.  Magn Reson Med. 1999;  41 857-865
  • 104 Burstein D, Velyvis J, Scott K T et al.. Protocol issues for delayed Gd(DTPA)2-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage.  Magn Reson Med. 2001;  45 36-41
  • 105 Todd D J, Kagan A, Chibnik L B, Kay J. Cutaneous changes of nephrogenic systemic fibrosis: predictor of early mortality and association with gadolinium exposure.  , [see comment] Arthritis Rheum. 2007;  56 3433-3441
  • 106 Ersoy H, Rybicki F J. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis.  J Magn Reson Imaging. 2007;  26 1190-1197
  • 107 Shapiro E M, Borthakur A, Kaufman J H, Leigh J S, Reddy R. Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging.  Osteoarthritis Cartilage. 2001;  9 533-538
  • 108 Lusse S, Claassen H, Gehrke T et al.. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage.  Magn Reson Imaging. 2000;  18 423-430
  • 109 Lehner K B, Rechl H P, Gmeinwieser J K, Heuck A F, Lukas H P, Kohl H P. Structure, function, and degeneration of bovine hyaline cartilage: assessment with MR imaging in vitro.  Radiology. 1989;  170 495-499
  • 110 Nieminen M T, Rieppo J, Toyras J et al.. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study.  Magn Reson Med. 2001;  46 487-493
  • 111 Nieminen M T, Toyras J, Laasanen M S, Silvennoinen J, Helminen H J, Jurvelin J S. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging.  J Biomech. 2004;  37 321-328
  • 112 Nieminen M T, Toyras J, Rieppo J et al.. Quantitative MR microscopy of enzymatically degraded articular cartilage.  Magn Reson Med. 2000;  43 676-681
  • 113 Goodwin D W, Zhu H, Dunn J F. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy.  AJR Am J Roentgenol. 2000;  174 405-409
  • 114 Dunn T C, Lu Y, Jin H, Ries M D, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis.  Radiology. 2004;  232 592-598
  • 115 Glaser C, Horng A, Mendlik T et al.. T2 relaxation time in patellar cartilage—global and regional reproducibility at 1.5 Tesla and 3 Tesla.  Rofo. 2007;  179 146-152
  • 116 Glaser C, Mendlik T, Dinges J et al.. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage.  Magn Reson Med. 2006;  56 527-534
  • 117 Mosher T J, Liu Y, Yang Q X et al.. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women.  Arthritis Rheum. 2004;  50 2820-2828
  • 118 Gold G E, Hargreaves B A, Stevens K J, Beaulieu C F. Advanced magnetic resonance imaging of articular cartilage.  Orthop Clin North Am. 2006;  37 331-347 vi
  • 119 Nieminen M T, Menezes N M, Williams A, Burstein D. T2 of articular cartilage in the presence of Gd-DTPA2.  Magn Reson Med. 2004;  51 1147-1152
  • 120 Regatte R R, Akella S V, Borthakur A, Kneeland J B, Reddy R. Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho.  Acad Radiol. 2002;  9 1388-1394
  • 121 Filidoro L, Dietrich O, Weber J et al.. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings.  Magn Reson Med. 2005;  53 993-998
  • 122 Deng X, Farley M, Nieminen M T, Gray M, Burstein D. Diffusion tensor imaging of native and degenerated human articular cartilage.  Magn Reson Imaging. 2007;  25 168-171
  • 123 Miller K L, Hargreaves B A, Gold G E, Pauly J M. Steady-state diffusion-weighted imaging of in vivo knee cartilage.  Magn Reson Med. 2004;  51 394-398
  • 124 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging.  Radiol Clin North Am. 2005;  43 641-653
  • 125 Redfield A G. Nuclear magnetic resonance saturation and rotary saturation in solids.  Phys Rev. 1955;  98 1787
  • 126 Santyr G E, Henkelman R M, Bronskill M J. Spin locking for magnetic resonance imaging with application to human breast.  Magn Reson Med. 1989;  12 25-37
  • 127 Santyr G E, Fairbanks E J, Kelcz F, Sorenson J A. Off-resonance spin locking for MR imaging.  Magn Reson Med. 1994;  32 43-51
  • 128 Akella S V, Regatte R R, Gougoutas A J, Borthakur A, Shapiro E M, Kneeland J B et al.. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T.  2001;  46(3) 419-423
  • 129 Regatte R R, Akella S V, Lonner J H, Kneeland J B, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2.  J Magn Reson Imaging. 2006;  23 547-553
  • 130 Hilal S K, Maudsley A A, Ra J B et al.. In vivo NMR imaging of sodium-23 in the human head.  J Comput Assist Tomogr. 1985;  9 1-7
  • 131 Maudsley A A, Hilal S K. Biological aspects of sodium-23 imaging.  Br Med Bull. 1984;  40 165-166
  • 132 Garner W H, Hilal S K, Lee S W, Spector A. Sodium-23 magnetic resonance imaging of the eye and lens.  Proc Natl Acad Sci U S A. 1986;  83 1901-1905
  • 133 Ra J B, Hilal S K, Oh C H, Mun I K. In vivo magnetic resonance imaging of sodium in the human body.  Magn Reson Med. 1988;  7 11-22
  • 134 Springer C S. Biological systems: spin-3/2 nuclei. In: Grant DM, Harris RK Encyclopedia of Nuclear Magnetic Resonance. New York; John Wiley 1996: 940-951
  • 135 Reddy R, Li S C, Noyszewski E A, Kneeland J B, Leigh J S. In vivo sodium multiple quantum spectroscopy of human articular cartilage.  Magn Reson Med. 1997;  38 207-214
  • 136 Reddy R, Shinnar M, Wang Z, Leigh J S. Multiple-quantum filters of spin-3/2 with pulses of arbitrary flip angle.  J Magn Reson B. 1994;  104 148-152
  • 137 Ling W, Regatte R R, Schweitzer M E, Jerschow A. Behavior of ordered sodium in enzymatically depleted cartilage tissue.  Magn Reson Med. 2006;  56 1151-1155
  • 138 Navon G, Werrmann J G, Maron R, Cohen S M. 31P NMR and triple quantum filtered 23Na NMR studies of the effects of inhibition of Na + /H + exchange on intracellular sodium and pH in working and ischemic hearts.  Magn Reson Med. 1994;  32 556-564
  • 139 Wheaton A J, Casey F L, Gougoutas A J et al.. Correlation of T1rho with fixed charge density in cartilage.  J Magn Reson Imaging. 2004;  20 519-525
  • 140 Shapiro E M, Borthakur A, Dandora R, Kriss A, Leigh J S, Reddy R. Sodium visibility and quantitation in intact bovine articular cartilage using high field 23Na MRI and MRS.  J Magn Reson. 2000;  142 24-31
  • 141 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland J B, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage.  NMR Biomed. 2006;  19 781-821
  • 142 Borthakur A, Shapiro E M, Beers J, Kudchodkar S, Kneeland J B, Reddy R. Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI.  Osteoarthritis Cartilage. 2000;  8 288-293
  • 143 Guivel-Scharen V, Sinnwell T, Wolff S D, Balaban R S. Detection of proton chemical exchange between metabolites and water in biological tissues.  J Magn Reson. 1998;  133 36-45
  • 144 Ward K M, Aletras A H, Balaban R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST).  J Magn Reson. 2000;  143 79-87
  • 145 Ward K M, Balaban R S. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST).  Magn Reson Med. 2000;  44 799-802
  • 146 Zhou J, Lal B, Wilson D A, Laterra J, van Zijl P C. Amide proton transfer (APT) contrast for imaging of brain tumors.  Magn Reson Med. 2003;  50 1120-1126
  • 147 Zhou J, Wilson D A, Sun P Z, Klaus J A, Van Zijl P C. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.  Magn Reson Med. 2004;  51 945-952
  • 148 Zhou J, Payen J F, Wilson D A, Traystman R J, van Zijl P C. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.  Nat Med. 2003;  9 1085-1090
  • 149 Henkelman R M, Stanisz G J, Graham S J. Magnetization transfer in MRI: a review.  NMR Biomed. 2001;  14 57-64
  • 150 Henkelman R M, Huang X, Xiang Q S, Stanisz G J, Swanson S D, Bronskill M J. Quantitative interpretation of magnetization transfer.  Magn Reson Med. 1993;  29 759-766
  • 151 Wolff S D, Balaban R S. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.  Magn Reson Med. 1989;  10 135-144

Ravinder R RegattePh.D. 

NYU-Hospital for Joint Diseases, Department of Radiology

301 East 17th St., New York, NY 10003

Email: ravinder.regatte@med.nyu.edu

    >