Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T01:02:07.830Z Has data issue: false hasContentIssue false

Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats*

Published online by Cambridge University Press:  09 March 2007

Katharina E. Scholz-Ahrens*
Affiliation:
Institute of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, Hermann Weigmann Str. 1, D-24103 Kiel, Germany
Yahya Açil
Affiliation:
Department of Oral and Maxillofacial Surgery, Kiel University Hospital, Germany
Jürgen Schrezenmeir
Affiliation:
Institute of Physiology and Biochemistry of Nutrition, Federal Dairy Research Centre, Hermann Weigmann Str. 1, D-24103 Kiel, Germany
*
Corresponding author: Dr K. E. Scholz-Ahrens, fax +49 431 609 2472, email scholz-ahrens@bafm.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the effects of dietary oligofructose and Ca on bone structure in ovariectomized rats, using microradiography and histomorphometry. Ninety-six animals were allocated to seven experimental groups: G1, sham-operated; G2–G7, ovariectomized. Semi-purified diets containing 5 g Ca/kg (recommended content) without oligofructose (G1, G2) or with 25, 50 or 100 g oligofructose/kg (G3, G4, G5) or 10 g Ca/kg (high content) without oligofructose (G6) or with 50 g oligofructose/kg (G7) were fed for 16 weeks. At the recommended level of Ca, high oligofructose (G5) increased femur mineral levels in ovariectomized rats, while medium oligofructose did so at high Ca. Increasing Ca in the absence of oligofructose did not increase femur mineral content. Trabecular bone area (%) analysed in the tibia was 10·3 (SEM 1·2) (G1), 7·7 (SEM 0·6) (G2), 9·3 (SEM 0·7) (G3), 9·4 (SEM 1·0) (G4), 9·5 (SEM 0·7) (G5), 10·2 (SEM 0·8) (G6), and 12·6 (SEM 0·8) (G7). At the recommended level of Ca, 25 g oligofructose/kg prevented loss of trabecular area due to increased trabecular thickness, while 50 or 100 g oligofructose/kg increased trabecular perimeter. At high Ca, oligofructose prevented loss of bone area due to increased trabecular number but similar thickness (G7 v. G6). When Ca was raised in the presence of oligofructose (G7), trabecular area and cortical thickness were highest, while loss of trabecular connectivity was lowest of all groups. At the same time, lumbar vertebra Ca was higher; 44·0 (SEM 0·8) (G7) compared with 41·6 (SEM 0·8) (G2), 41·4 (SEM 0·7) (G4), and 40·5 (SEM 1·0) mg (G6). We conclude that ovariectomy-induced loss of bone structure in the tibia was prevented but with different trabecular architecture, depending on whether dietary Ca was increased, oligofructose was incorporated, or both. Oligofructose was most effective when dietary Ca was high.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Abe, T, Sato, K, Miyakoshi, N, Kudo, T, Tamura, Y, Tsuchida, T & Kasukawa, Y (1999) Trabecular remodeling processes in the ovariectomized rat: modified node-strut analysis. Bone 24, 591596.CrossRefGoogle ScholarPubMed
Armbrecht, HJ, Zenser, TV, Gross, CJ & Davis, BB (1980) Adaptation to dietary calcium and phosphorus restriction changes with age in the rat. American Journal of Physiology 239, E322E327.Google ScholarPubMed
Baldock, PAJ, Need, AG, Moore, RJ, Durbridge, TC & Morris, HA (1999) Discordance between bone turnover and bone loss: effects of aging and ovariectomy in the rat. Journal of Bone Mineral Research 14, 14421448.CrossRefGoogle ScholarPubMed
Brommage, R, Binacua, C, Antille, S & Carrie, AL (1993) Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. Journal of Nutrition 123, 21862194.Google ScholarPubMed
Campbell, JM, Fahey, GC Jr & Wolf, BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. Journal of Nutrition 127, 130136.CrossRefGoogle ScholarPubMed
Chonan, O & Watanuki, M (1996) The effect of 6'-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. International Journal for Vitamin and Nutrition Research 66, 244249.Google Scholar
Coudray, C, Bellanger, J, Castiglia-Delavaud, C, Rémésy, C, Vermorel, M & Rayssignuier, Y (1997) Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron, and zinc in healthy young men. European Journal of Clinical Nutrition 51, 375380.CrossRefGoogle ScholarPubMed
Croucher, PI, Garrahan, NJ & Compston, JE (1996) Assessment of cancellous bone structure: comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. Journal of Bone Mineral Research 11, 955961.CrossRefGoogle ScholarPubMed
Cummings, SR, Black, DM, Vogt, TM & Group, FR (1996) Changes in BMD substantially underestimate the anti-fracture effects of alendronate and other anti-resorptive drugs. Journal of Bone Mineral Research 11, S102 abstr.Google Scholar
Delzenne, N, Aertssens, J, Verplaetse, H, Roccaro, M & Roberfroid, M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sciences 57, 15791587.CrossRefGoogle ScholarPubMed
Donath, K (1988) Die Trenn-Dünnschlifftechnik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien (The sawing and grinding technique (separation-microsection technique) for production of histological specimen of non-sliceable tissues and materials). Der Präparator 34, 197206.Google Scholar
Gallagher, JC (1996) Estrogen: prevention and treatment of osteoporosis. In Osteoporosis, pp. 671690 [Marcus, R, Feldman, D and Kelsey, J, editors]. San Diego: Academic Press.Google ScholarPubMed
Gaumet, N, Seibel, MJ, Coxam, V, Davicco, MJ, Lebecque, P & Barlet, JP (1997) Influence of ovariectomy and estradiol treatment on calcium homeostasis during ageing in rats. Archives of Physiology and Biochemistry 105, 435444.CrossRefGoogle ScholarPubMed
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Griffin, IJ, Davila, PM & Abrams, SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. British Journal of Nutrition 87, S1S5.CrossRefGoogle ScholarPubMed
Hahn, M, Vogel, M, Pompesius-Kempa, M & Delling, G (1992) Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture. Bone 13, 327330.CrossRefGoogle ScholarPubMed
Heaney, RP (1996) Nutrition and risk for osteoporosis. In Osteoporosis, pp. 483509 [Marcus, R, Feldman, D and Kelsey, J, editors]. San Diego: Academic Press.Google ScholarPubMed
Hein, A (1997) Der Einfluss unterschiedlicher Diäten auf die Struktur der Spongiosa von wachsenden und ovariektomierten Ratten. PhD Thesis, University of Kiel.Google Scholar
Kalu, DH & Orhii, PB (1998) Calcium absorption and bone loss in ovariectomized rats fed varying levels of dietary calcium. Calcified Tissue International 65, 7377.CrossRefGoogle Scholar
Kapadia, RD, Stroup, GB, Badger, AM, Koller, B, Levin, JM, Coatney, RW, Dodds, RA, Liang, X, Lark, MW & Gowen, M (1998) Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technology and Health Care 6, 361372.CrossRefGoogle Scholar
Kimmel, DB (1996) Animal models for in vivo experimentation in osteoporosis research. In Osteoporosis, pp. 671690 [Marcus, R, Feldman, D and Kelsey, J, editors]. San Diego: Academic Press.Google Scholar
Le Blay, G, Michel, C, Blottière, HM & Cherbut, C (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. Journal of Nutrition 129, 22312235.CrossRefGoogle Scholar
Levrat, M-A, Rémésy, C & Demigné, C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Lopez, HW, Coudray, C, Levrat-Verny, M, Feillet-Coudray, C, Demigne, C & Remesy, C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. Journal of Nutritional Biochemistry 11, 500508.CrossRefGoogle ScholarPubMed
Lupton, JR & Kurtz, PP (1993) Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. Journal of Nutrition 123, 15221530.CrossRefGoogle ScholarPubMed
Meunier, PJ (1996) Bone-forming agents. In Osteoporosis, pp. 305313 [Papapoulos, SE, Lips, P, Pols, HAP, Johnston, CC and Delmas, PD, editors]. Amsterdam: Elsevier.Google Scholar
National Research Council (1995) Nutrient Requirements of Laboratory Animals, 4th ed. Washington, DC: National Academic Press.Google Scholar
Ohta, A, Baba, S, Ohtsuki, M, Takizawa, T, Adachi, T & Hara, H (1997) In vivo absorption of calcium carbonate and magnesium oxide from the large intestine in rats. Journal of Nutrition Science and Vitaminology 43, 3546.CrossRefGoogle ScholarPubMed
Ohta, A, Baba, S, Takizawa, T & Adachi, T (1994 a) Effects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model. Journal of Nutrition Science and Vitaminology 40, 171180.CrossRefGoogle ScholarPubMed
Ohta, A, Motohashi, Y, Ohtsuki, M, Hirayama, M, Adachi, T & Sakuma, K (1998 a) Dietary fructooligosaccharides change the intestinal mucosal concentration of calbindin-D9k in rats. Journal of Nutrition 128, 934939.CrossRefGoogle Scholar
Ohta, A, Ohtsuki, M, Baba, S, Adachi, T, Sakata, T & Sakaguchi, EI (1995 a) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. Journal of Nutrition 125, 24172424.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Takizawa, T, Adachi, T & Kimura, S (1995 b) Effects of fructooligosaccharides on the absorption of iron, calcium and magnesium in iron-deficient anemic rats. Journal of Nutrition Science and Vitaminology 41, 281291.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Hosono, A, Adachi, T, Hara, H & Sakata, T (1998 b) Dietary fructooliogosaccharides prevent osteopenia after gastrectomy in rats. Journal of Nutrition 128, 106110.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Takizawa, T, Inaba, H, Adachi, T & Kimura, S (1994 b) Effects of fructooligosaccharides on the absorption of magnesium and calcium by cecectomized rats. International Journal for Vitamin and Nutrition Research 64, 316323.Google ScholarPubMed
Ohta, A, Ohtsuki, M, Uehara, M, Hosono, A, Hirayama, M, Adachi, T & Hara, H (1998 c) Dietary fructooliogosaccharides prevent postgastrectomy anemia and osteopenia in rats. Journal of Nutrition 128, 485490.CrossRefGoogle ScholarPubMed
Olah, A (1974) J. Histomorphometrie des Knochens (Histomorphometry of bone). Verhandlungen der Deutschen Gesellschaft für Pathologie 58, 104113.Google Scholar
O'Loughlin, PD & Morris, HA (1994) Oophorectomy in young rats impairs calcium balance by increasing intestinal calcium secretion. Journal of Nutrition 124, 726731.CrossRefGoogle ScholarPubMed
Peng, Z, Tuukkanen, J, Zhang, H & Väänänen, HK (1999) Alteration in the mechanical competence and structural properties in the femoral neck and vertebrae of ovariectomized rats. Journal of Bone Mineral Research 14, 616623.CrossRefGoogle ScholarPubMed
Rémésy, C, Levrat, M-A, Gamet, L & Demigné, C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. American Journal of Physiology 264, G855G862.Google ScholarPubMed
Roberfroid, MB, Van Loo, JAE & Gibson, GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. Journal of Nutrition 128, 1119.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE, Hein, A & Böβmann, K (1997) Quantification of bone structure as parameter of calcium bioavailability. In Bioavailability 1997, Wageningen 25–28 May, abstract p. 124.Google Scholar
Scholz-Ahrens, KE, Schaafsma, G, van den Heuvel, EGHM & Schrezenmeir, J (2001) Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition 73, 459S464S.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE & Schrezenmeir, J (2002) Fructooligosaccharides and mineral metabolism – experimental data and mechanism. British Journal of Nutrition 87, S179.CrossRefGoogle Scholar
Sugita, H, Oka, M, Toguchida, J, Nakamura, T, Ueo, T & Hayami, T (1999) Anisotropy of osteoporotic cancellous bone. Bone 24, 513516.CrossRefGoogle ScholarPubMed
Terheyden, H, Jepsen, S, Moller, B, Tucker, MM & Rueger, DC (1999) Sinus floor augmentation with simultaneous placement of dental implants using a combination of deproteinized bone xenografts and recombinant human osteogenic protein-1. A histometric study in miniature pigs. Clinical Oral Implants Research 10, 510521.CrossRefGoogle ScholarPubMed
Thomas, ML, Hope, WG & Ibarra, MJ (1988) The relationship between long bone growth rate and duodenal calcium transport in female rats. Journal of Bone Mineral Research 3, 503507.CrossRefGoogle ScholarPubMed
Trinidad, TP, Wolever, TM & Thompson, LU (1993) Interactive effects of calcium and short chain fatty acids on absorption in the distal colon of man. Nutrition Research 13, 417425.CrossRefGoogle Scholar
Trinidad, TP, Wolever, TM & Thompson, LU (1996) Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. American Journal of Clinical Nutrition 63, 574578.CrossRefGoogle ScholarPubMed
Turner, CH (1996) Fluoride and the FDA: a curious case. Journal of Bone Mineral Research 11, 13691370.CrossRefGoogle ScholarPubMed
Van den Heuvel, EGHM, Muijs, T, Van Dokkum, W & Schaafsma, G (1999) Lactulose stimulates calcium absorption in postmenopausal women. Journal of Bone Mineral Research 7, 12111216.CrossRefGoogle Scholar
Van den Heuvel, EGHM, Muijs, Th, Van Dokkum, W & Schaafsma, G (1998 a) Oligofructose stimulates calcium absorption in adolescents. American Journal of Clinical Nutrition 69, 544548.CrossRefGoogle Scholar
Van den Heuvel, EGHM, Schaafsma, G, Muijs, Th & Van Dokkum, W (1998 b) Non-digestible oligosaccharides do not interfere with calcium and non-haem iron absorption in young healthy men. American Journal of Clinical Nutrition 67, 412420.CrossRefGoogle Scholar
Van Loo, J, Cummings, J, Delzenne, N, Englyst, H, Franck, A, Hopkins, M, Kok, N, Macfarlane, G, Newton, D, Quigley, M, Roberfroid, M, Van Vliet, T & van den Heuvel, EGHM (1999) Functional food properties of NDO. A consensus report from the 'ENDO' project (DGXII AIRII-CT94-1095). British Journal of Nutrition 81, 121132.Google ScholarPubMed
Wood, RJ & Zheng, JJ (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. American Journal of Clinical Nutrition 65, 18031809.CrossRefGoogle ScholarPubMed