Skip to main content
Erschienen in: Der Orthopäde 4/2015

01.04.2015 | CME Zertifizierte Fortbildung

Morphologische und funktionelle Knorpeldiagnostik

verfasst von: Dr. C. Rehnitz, M.-A. Weber

Erschienen in: Die Orthopädie | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Heutzutage ist eine exzellente morphologische Knorpelbildgebung möglich, die auch feinste Knorpelpathologien darstellen kann. Neben den Standard-2-D-Sequenzen ist eine Vielzahl von 3-D-Sequenzen zur hochaufgelösten Knorpeldarstellung verfügbar. Im ersten Teil dieses Artikels werden daher die aktuellen Möglichkeiten der morphologischen Diagnostik beleuchtet. Der zweite Teil behandelt die funktionelle Knorpelbildgebung. Mit ihr ist es möglich, Veränderungen der Knorpelkomposition und somit Frühformen von Knorpelschädigungen zu erfassen bzw. diese biochemischen Veränderungen nach therapeutischer Intervention zu evaluieren. Hierbei werden bereits validierte Techniken wie dGEMRIC oder „T2-Mapping“ besprochen, aber auch neueste Techniken wie die gagCEST-Technik beleuchtet.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Robert Koch-Institut (Hrsg) (2013) Arthrose. Gesundheitsberichterstattung des Bundes, Heft 54. RKI, Berlin Robert Koch-Institut (Hrsg) (2013) Arthrose. Gesundheitsberichterstattung des Bundes, Heft 54. RKI, Berlin
2.
Zurück zum Zitat Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–335CrossRefPubMed Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–335CrossRefPubMed
4.
Zurück zum Zitat Amin S, LaValley MP, Guermazi A et al (2005) The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 52:3152–3159CrossRefPubMed Amin S, LaValley MP, Guermazi A et al (2005) The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 52:3152–3159CrossRefPubMed
5.
Zurück zum Zitat Lecouvet FE, Simoni P, Koutaïssoff S et al (2008) Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol 68:120–136CrossRefPubMed Lecouvet FE, Simoni P, Koutaïssoff S et al (2008) Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol 68:120–136CrossRefPubMed
6.
Zurück zum Zitat Lecouvet FE, Dorzée B, Dubuc JE et al (2007) Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17:1763–1771CrossRefPubMed Lecouvet FE, Dorzée B, Dubuc JE et al (2007) Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17:1763–1771CrossRefPubMed
7.
Zurück zum Zitat Rizzo C, Ceccarelli F, Gattamelata A et al (2013) Ultrasound in rheumatoid arthritis. Med Ultrason 15:199–208CrossRefPubMed Rizzo C, Ceccarelli F, Gattamelata A et al (2013) Ultrasound in rheumatoid arthritis. Med Ultrason 15:199–208CrossRefPubMed
8.
Zurück zum Zitat Jacobson JA (2007) Fundamentals of Musculoskeletal Ultrasound. Saunders Elsevier, Philadelphia, pp 152–155 Jacobson JA (2007) Fundamentals of Musculoskeletal Ultrasound. Saunders Elsevier, Philadelphia, pp 152–155
9.
Zurück zum Zitat Chan WP, Lang P, Stevens MP et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157:799–806CrossRefPubMed Chan WP, Lang P, Stevens MP et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157:799–806CrossRefPubMed
10.
Zurück zum Zitat Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157CrossRefPubMed Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157CrossRefPubMed
11.
Zurück zum Zitat Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757PubMed Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757PubMed
12.
Zurück zum Zitat Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513CrossRefPubMed Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513CrossRefPubMed
13.
Zurück zum Zitat Baudendistel KT, Heverhagen JT, Knopp MV (2004) Klinisches MRT bei 3 Tesla: Aktueller Stand. Radiologe 44:11–18CrossRefPubMed Baudendistel KT, Heverhagen JT, Knopp MV (2004) Klinisches MRT bei 3 Tesla: Aktueller Stand. Radiologe 44:11–18CrossRefPubMed
14.
Zurück zum Zitat Weber MA, Stillfried F von, Kloth JK, Rehnitz C (2012) Cartilage imaging of the hand and wrist using 3-T MRI. Semin Musculoskelet Radiol 16:71–87CrossRefPubMed Weber MA, Stillfried F von, Kloth JK, Rehnitz C (2012) Cartilage imaging of the hand and wrist using 3-T MRI. Semin Musculoskelet Radiol 16:71–87CrossRefPubMed
15.
Zurück zum Zitat Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146CrossRefPubMed Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146CrossRefPubMed
16.
Zurück zum Zitat Palmer AJ, Brown CP, McNally EG et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746CrossRefPubMed Palmer AJ, Brown CP, McNally EG et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746CrossRefPubMed
17.
Zurück zum Zitat Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low- and high-field-strength MR imaging at 0.18 and 1.0 T. J MagnReson Imaging 11:678–685CrossRef Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low- and high-field-strength MR imaging at 0.18 and 1.0 T. J MagnReson Imaging 11:678–685CrossRef
18.
Zurück zum Zitat Vahlensieck M, Schnieber O (2003) Routineperformance eines offenen Niederfeld-MRT-Geräts in der Beurteilung des Kniebinnenschadens und Vergleich mit Hochfeldsystemen. Orthopäde 32:175–178CrossRefPubMed Vahlensieck M, Schnieber O (2003) Routineperformance eines offenen Niederfeld-MRT-Geräts in der Beurteilung des Kniebinnenschadens und Vergleich mit Hochfeldsystemen. Orthopäde 32:175–178CrossRefPubMed
19.
Zurück zum Zitat Link TM, Sell CA, Masi JN et al (2005) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage 14:63–70CrossRefPubMed Link TM, Sell CA, Masi JN et al (2005) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage 14:63–70CrossRefPubMed
20.
Zurück zum Zitat Kijowski R, Blankenbaker DG, Davis KW et al (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250:839–848CrossRefPubMed Kijowski R, Blankenbaker DG, Davis KW et al (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250:839–848CrossRefPubMed
21.
Zurück zum Zitat Trattnig S, Zbýň S, Schmitt B et al (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22:2338–2346CrossRefPubMed Trattnig S, Zbýň S, Schmitt B et al (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22:2338–2346CrossRefPubMed
22.
Zurück zum Zitat Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859CrossRefPubMed Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859CrossRefPubMed
23.
Zurück zum Zitat Krug R, Stehling C, Kelley DA et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44:613–618CrossRefPubMed Krug R, Stehling C, Kelley DA et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44:613–618CrossRefPubMed
25.
Zurück zum Zitat Mosher TJ, Smith H, Dardzinski BJ et al (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669CrossRefPubMed Mosher TJ, Smith H, Dardzinski BJ et al (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669CrossRefPubMed
26.
Zurück zum Zitat Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409CrossRefPubMed Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409CrossRefPubMed
27.
Zurück zum Zitat Yoshioka H, Stevens K, Hargreaves BA et al (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864CrossRefPubMed Yoshioka H, Stevens K, Hargreaves BA et al (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864CrossRefPubMed
28.
Zurück zum Zitat Potter HG, Linklater JM, Allen AA et al (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284PubMed Potter HG, Linklater JM, Allen AA et al (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284PubMed
30.
Zurück zum Zitat Gold GE, McCauley TR, Gray ML, Disler DG (2003) What’s new in cartilage? Radiographics 23:1227–1242CrossRefPubMed Gold GE, McCauley TR, Gray ML, Disler DG (2003) What’s new in cartilage? Radiographics 23:1227–1242CrossRefPubMed
32.
Zurück zum Zitat Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212CrossRefPubMed Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212CrossRefPubMed
33.
Zurück zum Zitat Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311CrossRefPubMed Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311CrossRefPubMed
34.
Zurück zum Zitat Hardy PA, Recht MP, Piraino D et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335CrossRefPubMed Hardy PA, Recht MP, Piraino D et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335CrossRefPubMed
35.
Zurück zum Zitat Eckstein F, Hudelmaier M, Wirth W et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441CrossRefPubMedCentralPubMed Eckstein F, Hudelmaier M, Wirth W et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441CrossRefPubMedCentralPubMed
36.
Zurück zum Zitat Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441CrossRefPubMedCentralPubMed Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441CrossRefPubMedCentralPubMed
37.
Zurück zum Zitat Kijowski R, Gold GE (2011) Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771CrossRefPubMed Kijowski R, Gold GE (2011) Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771CrossRefPubMed
38.
Zurück zum Zitat Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61CrossRefPubMed Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61CrossRefPubMed
39.
Zurück zum Zitat Lenk S, Ludescher B, Martirosan P et al (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176:664–667CrossRefPubMed Lenk S, Ludescher B, Martirosan P et al (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176:664–667CrossRefPubMed
40.
Zurück zum Zitat Lee MJ, Motamedi K, Chow K, Seeger LL (2008) Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skeletal Radiol 37:19–25CrossRefPubMed Lee MJ, Motamedi K, Chow K, Seeger LL (2008) Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skeletal Radiol 37:19–25CrossRefPubMed
41.
Zurück zum Zitat Schmid MR, Pfirrmann CW, Koch P et al (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184:1744–1748CrossRefPubMed Schmid MR, Pfirrmann CW, Koch P et al (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184:1744–1748CrossRefPubMed
42.
Zurück zum Zitat Ristow O, Steinbach L, Sabo G et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee – image quality and diagnostic performance. Eur Radiol 19:1263–1272CrossRefPubMed Ristow O, Steinbach L, Sabo G et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee – image quality and diagnostic performance. Eur Radiol 19:1263–1272CrossRefPubMed
43.
Zurück zum Zitat Notohamiprodjo M, Horng A, Kuschel B et al (2012) 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil. Eur J Radiol 81:3441–3449CrossRefPubMed Notohamiprodjo M, Horng A, Kuschel B et al (2012) 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil. Eur J Radiol 81:3441–3449CrossRefPubMed
44.
Zurück zum Zitat Stevens KJ, Wallace CG, Chen W et al (2001) Imaging of the wrist at 1.5 T using isotropic three-dimensional fast spin echo CUBE. J Magn Reson Imaging 33:908–915CrossRef Stevens KJ, Wallace CG, Chen W et al (2001) Imaging of the wrist at 1.5 T using isotropic three-dimensional fast spin echo CUBE. J Magn Reson Imaging 33:908–915CrossRef
45.
Zurück zum Zitat Chhabra A, Soldatos T, Thawait GK et al (2012) Current perspectives on the advantages of 3-T MR imaging of the wrist. Radiographics 32:879–896CrossRefPubMed Chhabra A, Soldatos T, Thawait GK et al (2012) Current perspectives on the advantages of 3-T MR imaging of the wrist. Radiographics 32:879–896CrossRefPubMed
46.
Zurück zum Zitat Hegenscheid K, Puls R, Rosenberg C (2012) Bildgebungsstrategie bei Kniegelenkverletzungen. Radiologe 52:980–986CrossRefPubMed Hegenscheid K, Puls R, Rosenberg C (2012) Bildgebungsstrategie bei Kniegelenkverletzungen. Radiologe 52:980–986CrossRefPubMed
47.
Zurück zum Zitat Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202:160–169CrossRefPubMed Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202:160–169CrossRefPubMed
48.
Zurück zum Zitat Becce F, Richarme D, Omoumi P et al (2013) MR arthrography of the shoulder under axial traction: feasibility study to evaluate the superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging 37:1228–1233CrossRefPubMed Becce F, Richarme D, Omoumi P et al (2013) MR arthrography of the shoulder under axial traction: feasibility study to evaluate the superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging 37:1228–1233CrossRefPubMed
49.
Zurück zum Zitat Guntern D, Becce F, Richarme D et al (2011) Direct magnetic resonance arthrography of the wrist with axial traction: a feasibility study to assess joint cartilage. J Magn Reson Imaging 34:239–244CrossRefPubMed Guntern D, Becce F, Richarme D et al (2011) Direct magnetic resonance arthrography of the wrist with axial traction: a feasibility study to assess joint cartilage. J Magn Reson Imaging 34:239–244CrossRefPubMed
50.
Zurück zum Zitat Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368CrossRefPubMed Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368CrossRefPubMed
51.
Zurück zum Zitat Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation ofarticular cartilage. Magn Reson Med 45:36–41CrossRefPubMed Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation ofarticular cartilage. Magn Reson Med 45:36–41CrossRefPubMed
52.
Zurück zum Zitat Van Ginckel A, Baelde N, Almqvist KF et al (2010) Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls: a longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC). Osteoarthritis Cartilage 18:1564–1569CrossRefPubMed Van Ginckel A, Baelde N, Almqvist KF et al (2010) Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls: a longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC). Osteoarthritis Cartilage 18:1564–1569CrossRefPubMed
53.
Zurück zum Zitat Matzat SJ, Tiel J van, Gold GE, Oei EH (2013) Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 3:162–174PubMedCentralPubMed Matzat SJ, Tiel J van, Gold GE, Oei EH (2013) Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 3:162–174PubMedCentralPubMed
54.
Zurück zum Zitat Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129CrossRefPubMedCentralPubMed Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129CrossRefPubMedCentralPubMed
55.
Zurück zum Zitat Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36:665–673CrossRefPubMed Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36:665–673CrossRefPubMed
56.
Zurück zum Zitat Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan inarticular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558CrossRefPubMed Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan inarticular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558CrossRefPubMed
57.
Zurück zum Zitat Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865CrossRefPubMed Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865CrossRefPubMed
58.
Zurück zum Zitat Trattnig S, Mlynarik V, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Med 17:577–583 Trattnig S, Mlynarik V, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Med 17:577–583
59.
Zurück zum Zitat Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514CrossRefPubMed Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514CrossRefPubMed
60.
Zurück zum Zitat Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32CrossRefPubMed Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32CrossRefPubMed
61.
Zurück zum Zitat Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992PubMed Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992PubMed
62.
Zurück zum Zitat Mamisch TC, Kain MS, Bittersohl B et al (2011) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoacetabular impingement. J Orthop Res 29:1305–1311CrossRefPubMed Mamisch TC, Kain MS, Bittersohl B et al (2011) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoacetabular impingement. J Orthop Res 29:1305–1311CrossRefPubMed
63.
Zurück zum Zitat Trattnig S, Domayer S, Welsch GW (2009) MR imaging of cartilage and its repair in the knee – a review. Eur Radiol 19:1582–1594CrossRefPubMed Trattnig S, Domayer S, Welsch GW (2009) MR imaging of cartilage and its repair in the knee – a review. Eur Radiol 19:1582–1594CrossRefPubMed
64.
Zurück zum Zitat Welsch GH, Mamisch TC, Quirbach S et al (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19:1253–1262CrossRefPubMed Welsch GH, Mamisch TC, Quirbach S et al (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19:1253–1262CrossRefPubMed
65.
Zurück zum Zitat Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26:974–982CrossRefPubMed Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26:974–982CrossRefPubMed
66.
Zurück zum Zitat Apprich S, Mamisch TC, Welsch GH et al (2012) Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 T MRI: a feasibility study. Skeletal Radiol 41:987–995CrossRefPubMed Apprich S, Mamisch TC, Welsch GH et al (2012) Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 T MRI: a feasibility study. Skeletal Radiol 41:987–995CrossRefPubMed
67.
Zurück zum Zitat Kijowski R, Blankenbaker DG, Munoz Del Rio A et al (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513CrossRefPubMed Kijowski R, Blankenbaker DG, Munoz Del Rio A et al (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513CrossRefPubMed
68.
Zurück zum Zitat Dardzinski BJ, Mosher TJ, Li S et al (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550CrossRefPubMed Dardzinski BJ, Mosher TJ, Li S et al (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550CrossRefPubMed
69.
Zurück zum Zitat Welsch GH, Mamisch TC, Marlovits S et al (2009) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963CrossRefPubMed Welsch GH, Mamisch TC, Marlovits S et al (2009) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963CrossRefPubMed
70.
Zurück zum Zitat Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures – initial experience. Radiology 247:154–161CrossRefPubMed Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures – initial experience. Radiology 247:154–161CrossRefPubMed
71.
Zurück zum Zitat Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270CrossRefPubMedCentralPubMed Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270CrossRefPubMedCentralPubMed
72.
Zurück zum Zitat Schmitt B, Zbýn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7-T. Radiology 260:257–264CrossRefPubMed Schmitt B, Zbýn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7-T. Radiology 260:257–264CrossRefPubMed
73.
Zurück zum Zitat Reddy R, Insko EK, Noyszewski EA et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701CrossRefPubMed Reddy R, Insko EK, Noyszewski EA et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701CrossRefPubMed
74.
Zurück zum Zitat Zbýň S, Stelzeneder D, Welsch GH et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20:837–845CrossRefPubMed Zbýň S, Stelzeneder D, Welsch GH et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20:837–845CrossRefPubMed
75.
Zurück zum Zitat Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthritis Cartilage 10:838–844CrossRefPubMed Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthritis Cartilage 10:838–844CrossRefPubMed
76.
Zurück zum Zitat Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86:20120163CrossRefPubMedCentralPubMed Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86:20120163CrossRefPubMedCentralPubMed
Metadaten
Titel
Morphologische und funktionelle Knorpeldiagnostik
verfasst von
Dr. C. Rehnitz
M.-A. Weber
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Orthopädie / Ausgabe 4/2015
Print ISSN: 2731-7145
Elektronische ISSN: 2731-7153
DOI
https://doi.org/10.1007/s00132-015-3110-3

Weitere Artikel der Ausgabe 4/2015

Der Orthopäde 4/2015 Zur Ausgabe

Update Orthopädie – Arthrose

Hyaluronsäure-Injektionen bei Kniearthrose

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.