Skip to main content
Erschienen in: Journal of Neurology 3/2016

01.03.2016 | Original Communication

Motor network structure and function are associated with motor performance in Huntington’s disease

verfasst von: Hans-Peter Müller, Martin Gorges, Georg Grön, Jan Kassubek, G. Bernhard Landwehrmeyer, Sigurd D. Süßmuth, Robert Christian Wolf, Michael Orth

Erschienen in: Journal of Neurology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

In Huntington’s disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus–somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network’s connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216CrossRefPubMed Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216CrossRefPubMed
2.
Zurück zum Zitat Poudel GR, Stout JC, Domínguez DJF et al (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412CrossRefPubMed Poudel GR, Stout JC, Domínguez DJF et al (2015) Longitudinal change in white matter microstructure in Huntington’s disease: the IMAGE-HD study. Neurobiol Dis 74:406–412CrossRefPubMed
3.
Zurück zum Zitat Della Nave R, Ginestroni A, Tessa C et al (2010) Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol 31:1675–1681CrossRefPubMed Della Nave R, Ginestroni A, Tessa C et al (2010) Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am J Neuroradiol 31:1675–1681CrossRefPubMed
4.
Zurück zum Zitat Dumas EM, van den Bogaard SJA, Ruber ME et al (2012) Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 33:203–212CrossRefPubMed Dumas EM, van den Bogaard SJA, Ruber ME et al (2012) Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp 33:203–212CrossRefPubMed
5.
Zurück zum Zitat Poudel GR, Stout JC, Domínguez DJF et al (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187CrossRefPubMed Poudel GR, Stout JC, Domínguez DJF et al (2014) White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiol Dis 65:180–187CrossRefPubMed
6.
Zurück zum Zitat Gavazzi C, Nave R Della, Petralli R et al Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31:574–80 Gavazzi C, Nave R Della, Petralli R et al Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr 31:574–80
7.
Zurück zum Zitat Minkova L, Eickhoff SB, Abdulkadir A, et al (2015) Large-scale brain network abnormalities in Huntington’s disease revealed by structural covariance. Hum Brain Mapp (in press) Minkova L, Eickhoff SB, Abdulkadir A, et al (2015) Large-scale brain network abnormalities in Huntington’s disease revealed by structural covariance. Hum Brain Mapp (in press)
8.
Zurück zum Zitat Müller H-P, Grön G, Sprengelmeyer R et al (2013) Evaluating multicenter DTI data in Huntington’s disease on site specific effects: an ex post facto approach. NeuroImage Clin 2:161–167CrossRefPubMedPubMedCentral Müller H-P, Grön G, Sprengelmeyer R et al (2013) Evaluating multicenter DTI data in Huntington’s disease on site specific effects: an ex post facto approach. NeuroImage Clin 2:161–167CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649CrossRefPubMed Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649CrossRefPubMed
10.
Zurück zum Zitat Peinemann A, Schuller S, Pohl C et al (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239:11–19CrossRefPubMed Peinemann A, Schuller S, Pohl C et al (2005) Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 239:11–19CrossRefPubMed
11.
Zurück zum Zitat Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF (2008) Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 58:209–225CrossRefPubMed Bohanna I, Georgiou-Karistianis N, Hannan AJ, Egan GF (2008) Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington’s disease. Brain Res Rev 58:209–225CrossRefPubMed
12.
Zurück zum Zitat Klöppel S, Henley SM, Hobbs NZ et al (2009) Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience 164:205–219CrossRefPubMedPubMedCentral Klöppel S, Henley SM, Hobbs NZ et al (2009) Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience 164:205–219CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Novak MJU, Seunarine KK, Gibbard CR et al (2015) Basal ganglia-cortical structural connectivity in Huntington’s disease. Hum Brain Mapp 36:1728–1740CrossRefPubMed Novak MJU, Seunarine KK, Gibbard CR et al (2015) Basal ganglia-cortical structural connectivity in Huntington’s disease. Hum Brain Mapp 36:1728–1740CrossRefPubMed
14.
Zurück zum Zitat Phillips O, Squitieri F, Sanchez-Castaneda C et al (2015) The corticospinal tract in Huntington’s disease. Cereb Cortex 25:2670–2682CrossRefPubMed Phillips O, Squitieri F, Sanchez-Castaneda C et al (2015) The corticospinal tract in Huntington’s disease. Cereb Cortex 25:2670–2682CrossRefPubMed
15.
Zurück zum Zitat Wolf RC, Sambataro F, Vasic N et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol Med 44:3341–3356CrossRefPubMed Wolf RC, Sambataro F, Vasic N et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol Med 44:3341–3356CrossRefPubMed
16.
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMed
17.
Zurück zum Zitat Shoulson I (1981) Huntington disease: functional capacities in patients treated with neuroleptic and antidepressant drugs. Neurology 31:1333–1335CrossRefPubMed Shoulson I (1981) Huntington disease: functional capacities in patients treated with neuroleptic and antidepressant drugs. Neurology 31:1333–1335CrossRefPubMed
18.
Zurück zum Zitat Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef
19.
Zurück zum Zitat Müller H-P, Unrath A, Ludolph AC, Kassubek J (2007) Preservation of diffusion tensor properties during spatial normalization by use of tensor imaging and fibre tracking on a normal brain database. Phys Med Biol 52:N99–N109CrossRefPubMed Müller H-P, Unrath A, Ludolph AC, Kassubek J (2007) Preservation of diffusion tensor properties during spatial normalization by use of tensor imaging and fibre tracking on a normal brain database. Phys Med Biol 52:N99–N109CrossRefPubMed
20.
Zurück zum Zitat Müller H-P, Unrath A, Sperfeld AD et al (2007) Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology. Biomed Eng Online 6:42CrossRef Müller H-P, Unrath A, Sperfeld AD et al (2007) Diffusion tensor imaging and tractwise fractional anisotropy statistics: quantitative analysis in white matter pathology. Biomed Eng Online 6:42CrossRef
21.
Zurück zum Zitat Müller H-P, Kassubek J (2013) Diffusion tensor magnetic resonance imaging in the analysis of neurodegenerative diseases. J Vis Exp 77 Müller H-P, Kassubek J (2013) Diffusion tensor magnetic resonance imaging in the analysis of neurodegenerative diseases. J Vis Exp 77
22.
Zurück zum Zitat Kunimatsu A, Aoki S, Masutani Y et al (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3:11–17CrossRefPubMed Kunimatsu A, Aoki S, Masutani Y et al (2004) The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 3:11–17CrossRefPubMed
23.
Zurück zum Zitat Müller H-P, Unrath A, Riecker A et al (2009) Intersubject variability in the analysis of diffusion tensor images at the group level: fractional anisotropy mapping and fiber tracking techniques. Magn Reson Imaging 27:324–334CrossRefPubMed Müller H-P, Unrath A, Riecker A et al (2009) Intersubject variability in the analysis of diffusion tensor images at the group level: fractional anisotropy mapping and fiber tracking techniques. Magn Reson Imaging 27:324–334CrossRefPubMed
24.
Zurück zum Zitat Gorges M, Müller H-P, Lulé D et al (2015) To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson’s disease. Neurobiol Aging 36:1727–1735CrossRefPubMed Gorges M, Müller H-P, Lulé D et al (2015) To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson’s disease. Neurobiol Aging 36:1727–1735CrossRefPubMed
25.
Zurück zum Zitat Gorges M, Müller H-P, Ludolph AC et al (2014) Intrinsic functional connectivity networks in healthy elderly subjects: a multiparametric approach with structural connectivity analysis. Biomed Res Int 2014:Article ID 947252 Gorges M, Müller H-P, Ludolph AC et al (2014) Intrinsic functional connectivity networks in healthy elderly subjects: a multiparametric approach with structural connectivity analysis. Biomed Res Int 2014:Article ID 947252
26.
Zurück zum Zitat Ashby FG (2011) Statistical analysis of fMRI Data. MIT Press, Cambridge, MA Ashby FG (2011) Statistical analysis of fMRI Data. MIT Press, Cambridge, MA
27.
Zurück zum Zitat Van Dijk KRA, Hedden T, Venkataraman A et al (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321CrossRefPubMedPubMedCentral Van Dijk KRA, Hedden T, Venkataraman A et al (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMed
29.
30.
31.
Zurück zum Zitat Gorges M, Müller H-P, Lulé D, et al. (2015) The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson’s disease. Brain Imaging Behav (in press) Gorges M, Müller H-P, Lulé D, et al. (2015) The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson’s disease. Brain Imaging Behav (in press)
32.
Zurück zum Zitat Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878CrossRefPubMed Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878CrossRefPubMed
33.
Zurück zum Zitat Unrath A, Müller H-P, Riecker A et al (2010) Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp 31:1727–1740PubMed Unrath A, Müller H-P, Riecker A et al (2010) Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp 31:1727–1740PubMed
34.
Zurück zum Zitat Rajapakse JC, Giedd JN, Rapoport JL (1997) Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 16:176–186CrossRefPubMed Rajapakse JC, Giedd JN, Rapoport JL (1997) Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 16:176–186CrossRefPubMed
35.
Zurück zum Zitat Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23:84–97CrossRefPubMed Tohka J, Zijdenbos A, Evans A (2004) Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23:84–97CrossRefPubMed
36.
Zurück zum Zitat Manjón JV, Coupé P, Martí-Bonmatí L et al (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203CrossRefPubMed Manjón JV, Coupé P, Martí-Bonmatí L et al (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203CrossRefPubMed
37.
38.
Zurück zum Zitat Jones R, Stout JC, Labuschagne I et al (2014) The potential of composite cognitive scores for tracking progression in Huntington’s disease. J Huntingtons Dis 3:197–207PubMed Jones R, Stout JC, Labuschagne I et al (2014) The potential of composite cognitive scores for tracking progression in Huntington’s disease. J Huntingtons Dis 3:197–207PubMed
39.
Zurück zum Zitat Douaud G, Behrens TE, Poupon C et al (2009) In vivo evidence for the selective subcortical degeneration in Huntington’s disease. Neuroimage 46:958–966CrossRefPubMed Douaud G, Behrens TE, Poupon C et al (2009) In vivo evidence for the selective subcortical degeneration in Huntington’s disease. Neuroimage 46:958–966CrossRefPubMed
40.
Zurück zum Zitat Rosas HD, Tuch DS, Hevelone ND et al (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21:1317–1325CrossRefPubMed Rosas HD, Tuch DS, Hevelone ND et al (2006) Diffusion tensor imaging in presymptomatic and early Huntington’s disease: selective white matter pathology and its relationship to clinical measures. Mov Disord 21:1317–1325CrossRefPubMed
41.
Zurück zum Zitat Hobbs NZ, Farmer RE, Rees EM et al (2015) Short-interval observational data to inform clinical trial design in Huntington’s disease. J Neurol Neurosurg Psychiatry 86:1281–1288CrossRef Hobbs NZ, Farmer RE, Rees EM et al (2015) Short-interval observational data to inform clinical trial design in Huntington’s disease. J Neurol Neurosurg Psychiatry 86:1281–1288CrossRef
42.
Zurück zum Zitat Song S-K, Sun S-W, Ju W-K et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722CrossRefPubMed Song S-K, Sun S-W, Ju W-K et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722CrossRefPubMed
43.
Zurück zum Zitat Tobin JE, Xie M, Le TQ et al (2011) Reduced axonopathy and enhanced remyelination after chronic demyelination in fibroblast growth factor 2 (Fgf2)-null mice: differential detection with diffusion tensor imaging. J Neuropathol Exp Neurol 70:157–165CrossRefPubMedPubMedCentral Tobin JE, Xie M, Le TQ et al (2011) Reduced axonopathy and enhanced remyelination after chronic demyelination in fibroblast growth factor 2 (Fgf2)-null mice: differential detection with diffusion tensor imaging. J Neuropathol Exp Neurol 70:157–165CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRefPubMedPubMedCentral Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Sprengelmeyer R, Orth M, Müller H-P et al (2014) The neuroanatomy of subthreshold depressive symptoms in Huntington’s disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study. Psychol Med 44:1867–1878CrossRefPubMed Sprengelmeyer R, Orth M, Müller H-P et al (2014) The neuroanatomy of subthreshold depressive symptoms in Huntington’s disease: a combined diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) study. Psychol Med 44:1867–1878CrossRefPubMed
46.
Zurück zum Zitat Cauda F, D’Agata F, Sacco K et al (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23CrossRefPubMed Cauda F, D’Agata F, Sacco K et al (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23CrossRefPubMed
47.
Zurück zum Zitat Gong D, He H, Liu D et al (2015) Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci Rep 5:9763CrossRefPubMed Gong D, He H, Liu D et al (2015) Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci Rep 5:9763CrossRefPubMed
48.
Zurück zum Zitat Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873CrossRefPubMedPubMedCentral Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat McColgan P, Seunarine KK, Razi A et al (2015) Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138:3327–3344CrossRefPubMedPubMedCentral McColgan P, Seunarine KK, Razi A et al (2015) Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138:3327–3344CrossRefPubMedPubMedCentral
Metadaten
Titel
Motor network structure and function are associated with motor performance in Huntington’s disease
verfasst von
Hans-Peter Müller
Martin Gorges
Georg Grön
Jan Kassubek
G. Bernhard Landwehrmeyer
Sigurd D. Süßmuth
Robert Christian Wolf
Michael Orth
Publikationsdatum
01.03.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 3/2016
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-8014-y

Weitere Artikel der Ausgabe 3/2016

Journal of Neurology 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.