Association of meal timing with body composition and cardiometabolic risk factors in young adults

European Journal of Nutrition

Authors

Manuel Dote-Montero^a, Francisco M. Acosta^{a,b,c,d}, Guillermo Sanchez-Delgado^{a,e}, Elisa Merchan-Ramirez^a, Francisco J. Amaro-Gahete^{a,f}, Idoia Labayen^{g,h,i} and Jonatan R. Ruiz^{a,j}

Affiliations

^aPROmoting FITness and Health through Physical Activity Research Group, Sport and Health University Research Institute, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

^bTurku PET Centre, University of Turku, Turku, Finland.

^cTurku PET Centre, Turku University Hospital, Turku, Finland.

^dInFLAMES Research Flagship Center, University of Turku, Finland.

^eDepartment of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

^fEFFECTS-262 Research Group, Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.

^gInstitute for Sustainability & Food Chain Innovation (ISFOOD), University of Navarra, Pamplona, Spain.

^hNavarra Institute for Health Research, IdiSNA, Pamplona, Spain.

ⁱDepartment of Health Sciences, Public University of Navarra, Campus de Arrosadia, Pamplona, Spain.

^jInstituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.

Keywords: Chrononutrition; Circadian rhythms; Timing of food intake; Intermittent fasting; Fat mass; Insulin resistence.

Running title: meal timing, body composition and metabolic health

Corresponding authors

Manuel Dote-Montero. Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain. Email: <u>manueldote@ugr.es</u>

Jonatan Ruiz Ruiz, Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Carretera de Alfacar s/n, 18071 Granada, Spain. E-mail: <u>ruizj@ugr.es</u>

Extension for Nutritional Epidemiology studies STROBE recommendations Reported Item Item (STROBE-nut) on page # nr 2 **Title and** 1 (a) Indicate the study's design with a commonly **nut-1** State the dietary/nutritional assessment method(s) abstract used term in the title or the abstract. used in the title, abstract, or keywords. (b) Provide in the abstract an informative and balanced summary of what was done and what was found. Introduction Background 2 Explain the scientific background and rationale for 3-4 rationale the investigation being reported. **Objectives** State specific objectives, including any pre-3 4 specified hypotheses. Methods Study design 4 Present key elements of study design early in the 5 paper. 5 Describe the setting, locations, and relevant dates, nut-5 Describe any characteristics of the study settings Settings 5 including periods of recruitment, exposure, followthat might affect the dietary intake or nutritional status up, and data collection. of the participants, if applicable. a) Cohort study—Give the eligibility criteria, and **Participants** 6 nut-6 Report particular dietary, physiological or 5 the sources and methods of selection of nutritional characteristics that were considered when participants. Describe methods of follow-up. selecting the target population. Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls. Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants. (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed. Case-control study—For matched studies, give matching criteria and the number of controls per case. 7 Clearly define all outcomes, exposures, predictors, nut-7.1 Clearly define foods, food groups, nutrients, or Variables 5-8 potential confounders, and effect modifiers. Give other food components. nut-7.2 When using dietary patterns or indices, describe diagnostic criteria, if applicable. the methods to obtain them and their nutritional properties. Data sources -8 For each variable of interest, give sources of data **nut-8.1** Describe the dietary assessment method(s), e.g., 5-8 and details of methods of assessment portion size estimation, number of days and items measurements recorded, how it was developed and administered, and (measurement). Describe comparability of how quality was assured. Report if and how supplement assessment methods if there is more than one group. intake was assessed. nut-8.2 Describe and justify food composition data used. Explain the procedure to match food composition with consumption data. Describe the use of conversion factors, if applicable. nut-8.3 Describe the nutrient requirements, recommendations, or dietary guidelines and the evaluation approach used to compare intake with the dietary reference values, if applicable. nut-8.4 When using nutritional biomarkers, additionally use the STROBE Extension for Molecular Epidemiology (STROBE-ME). Report the type of biomarkers used and their usefulness as dietary exposure markers. **nut-8.5** Describe the assessment of nondietary data (e.g., nutritional status and influencing factors) and timing of the assessment of these variables in relation to dietary

Table S1. Reporting Table for STROBE-nut: An extension of the STROBE statement for nutritional epidemiology.

			assessment.	
			nut-8.6 Report on the validity of the dietary or	
			nutritional assessment methods and any internal or	
			external validation used in the study, if applicable.	
Bias	9	Describe any efforts to address potential sources of	nut-9 Report how bias in dietary or nutritional	-
		bias.	assessment was addressed, e.g., misreporting, changes in	
			habits as a result of being measured, or data imputation	
			from other sources	
Study Size	10	Explain how the study size was arrived at.		5
Quantitative	11	Explain how quantitative variables were handled	nut-11 Explain categorization of dietary/nutritional data	5-8
variables		in the analyses. If applicable, describe which	(e.g., use of N-tiles and handling of nonconsumers) and	
		groupings were chosen and why.	the choice of reference category, if applicable.	
Statistical	12	(a) Describe all statistical methods, including those	nut-12.1 Describe any statistical method used to	8-9
Methods		used to control for confounding	combine dietary or nutritional data, if applicable.	
		(b) Describe any methods used to examine	nut-12.2 Describe and justify the method for energy	
		subgroups and interactions.	adjustments, intake modeling, and use of weighting	
		(c) Explain how missing data were addressed.	factors, if applicable.	

		 (d) Cohort study—If applicable, explain how loss to follow-up was addressed. Case-control study—If applicable, explain how matching of cases and controls was addressed. Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy. (e) Describe any sensitivity analyses. 	nut-12.3 Report any adjustments for measurement error, i.e,. from a validity or calibration study.	
Results				
Participants	13	 (a) Report the numbers of individuals at each stage of the study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analyzed. (b) Give reasons for non-participation at each stage. (c) Consider use of a flow diagram. 	nut-13 Report the number of individuals excluded based on missing, incomplete or implausible dietary/nutritional data.	10
Descriptive data	14	 (a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) Cohort study—Summarize follow-up time (e.g., average and total amount) 	nut-14 Give the distribution of participant characteristics across the exposure variables if applicable. Specify if food consumption of total population or consumers only were used to obtain results.	10
Outcome data	15	Cohort study—Report numbers of outcome events or summary measures over time. Case-control study—Report numbers in each exposure category, or summary measures of exposure. Cross-sectional study—Report numbers of outcome events or summary measures.		10-11
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included. (b) Report category boundaries when continuous variables were categorized. (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period. 	nut-16 Specify if nutrient intakes are reported with or without inclusion of dietary supplement intake, if applicable.	10-11
Other analyses	17	Report other analyses done—e.g., analyses of subgroups and interactions and sensitivity analyses	nut-17 Report any sensitivity analysis (e.g., exclusion of misreporters or outliers) and data imputation, if applicable	11
Discussion				
Key results	18	Summarize key results with reference to study objectives.		
Limitation	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	nut-19 Describe the main limitations of the data sources and assessment methods used and implications for the interpretation of the findings.	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	nut-20 Report the nutritional relevance of the findings, given the complexity of diet or nutrition as an exposure.	15
Generalizability	21	Discuss the generalizability (external validity) of the study results.		15
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based		1

Ethics	nut-22.1 Describe the procedure for consent and study	5
	approval from ethics committee(s).	
Supplementary	nut-22.2 Provide data collection tools and data as online	5-11
material	material or explain how they can be accessed.	

Table S2. Association of meal timing with body composition after adjusting for potential confounders in young adults.

	P-value															
Body composition		All (N=116)					Men (N=34)					Women (N=82)				
	M0	M1	M2	M3	M4	M0	M1	M2	M3	M4	M0	M1	M2	M3	M4	
Body mass index (Kg/m ²)	•	•				•					•					
Eating window (h)	0.452	0.617	0.574	0.516	0.493	0.166	-	0.121	0.116	0.105	0.433	-	0.410	0.293	0.280	
Caloric midpoint (h)	0.759	0.662	0.643	0.972	0.811	0.410	-	0.369	0.373	0.412	0.201	-	0.205	0.594	0.353	
Eating jetlag (h)	0.945	0.815	0.848	0.780	0.839	0.681	-	0.783	0.787	0.723	0.917	-	0.933	0.855	0.984	
Time from midsleep point to first food intake (h) ^a	0.339	0.313	0.277	0.351	0.185	0.166	-	0.111	0.117	0.015	0.833	-	0.825	0.531	0.388	
Time from last food intake to midsleep point (h) ^a	0.737	0.474	0.482	0.689	0.464	0.956	-	0.925	0.929	0.418	0.334	-	0.334	0.412	0.477	
Fat mass (%)																
Eating window (h)	0.979	0.677	0.663	0.665	0.719	0.482	-	0.373	0.493	0.424	0.886	-	0.809	0.766	0.550	
Caloric midpoint (h)	0.691	0.535	0.539	0.527	0.816	0.048	-	0.037	0.047	0.063	0.460	-	0.505	0.652	0.333	
Eating jetlag (h)	0.563	0.682	0.686	0.688	0.837	0.943	-	0.918	0.949	0.922	0.625	-	0.572	0.520	0.695	
Time from midsleep point to first food intake (h) ^a	0.578	0.528	0.512	0.519	0.502	0.459	-	0.332	0.317	0.127	0.968	-	0.972	0.866	0.513	
Time from last food intake to midsleep point (h) ^a	0.390	0.691	0.694	0.704	0.702	0.938	-	0.899	0.626	0.302	0.634	-	0.612	0.658	0.965	
Lean mass index (Kg/m^2)																
Eating window (h)	0.289	0.514	0.462	0.380	0.330	0.068	-	0.058	0.029	0.032	0.250	-	0.268	0.160	0.234	
Caloric midpoint (h)	0.659	0.334	0.316	0.759	0.713	0.901	-	0.920	0.997	0.979	0.228	-	0.205	0.684	0.570	
Eating jetlag (h)	0.776	0.949	0.996	0.897	0.856	0.625	-	0.653	0.681	0.704	0.642	-	0.608	0.820	0.816	
Time from midsleep point to first food intake (h) ^a	0.434	0.261	0.222	0.307	0.098	0.100	-	0.082	0.088	0.009	0.651	-	0.695	0.387	0.419	
Time from last food intake to midsleep point (h) ^a	0.724	0.562	0.572	0.892	0.510	0.873	-	0.884	0.617	0.878	0.292	-	0.306	0.384	0.292	
Visceral adipose tissue mass (g)																
Eating window (h)	0.236	0.342	0.312	0.272	0.285	0.142	-	0.077	0.095	0.077	0.989	-	0.926	0.784	0.685	
Caloric midpoint (h)	0.771	0.669	0.653	0.997	0.743	0.464	-	0.384	0.418	0.481	0.315	-	0.343	0.821	0.516	
Eating jetlag (h)	0.600	0.467	0.485	0.439	0.539	0.848	-	0.959	0.975	0.920	0.440	-	0.402	0.261	0.369	
Time from midsleep point to first food intake (h) ^a	0.261	0.233	0.207	0.260	0.178	0.106	-	0.046	0.047	0.008	0.960	-	0.997	0.704	0.548	
Time from last food intake to midsleep point (h) ^a	0.982	0.721	0.728	0.951	0.855	0.798	-	0.744	0.602	0.296	0.809	-	0.791	0.923	0.945	
Waist circumference (cm) ^b																
Eating window (h)	0.352	0.541	0.525	0.472	0.463	0.111	-	0.077	0.078	0.087	0.337	-	0.293	0.209	0.283	
Caloric midpoint (h)		0.842	0.847	0.570	0.738	0.203	-	0.179	0.187	0.178	0.375	-	0.407	0.808	0.443	
Eating jetlag (h)	0.491	0.292	0.292	0.287	0.328	0.594	-	0.687	0.689	0.722	0.352	-	0.317	0.243	0.337	
Time from midsleep point to first food intake (h) ^a	0.450	0.393	0.373	0.421	0.188	0.277	-	0.200	0.206	0.048	0.876	-	0.838	0.595	0.607	
Time from last food intake to midsleep point (h) ^a	0.866	0.722	0.727	0.895	0.564	0.536	-	0.565	0.500	0.989	0.203	-	0.196	0.335	0.175	

P values are obtained for Model 0 (single linear regression), then the analyses were adjusted for: sex (only in all, Model 1); sex and *a priori* Mediterranean diet pattern (MeD-P) (Model 2); sex, *a priori* Mediterranean diet pattern and light physical activity (min/day)^c (Model 3); sex, *a priori* Mediterranean diet pattern, light physical activity (min/day) and midsleep point (h)^d (Model 4). Sex was included only when men and women were analysed together (i.e., all). In *time from midsleep point to first food intake* and *time from last food intake to midsleep point* model 4 included sleep duration (h) instead of midsleep point. Neither association remained statistically significant after applying false discovery rate correction (Benjamini-Hochberg). Some specific outcomes had missing data for all and women: ^{a,d}3 missing participants, ^b2 missing participants, and ^c1 missing participant. Abbreviation: M, Model.

Table S3. Association of meal timing with cardiometabolic risk factors after adjusting for potential confounders in young adults.

	P-value																	
Cardiometabolic risk factors	All (N=117)						Men (N=36)						Women (N=81)					
		M1	M2	M3	M4	M5	M0	M1	M2	M3	M4	M5	M0	M1	M2	M3	M4	M5
Mean blood pressure (mmHg) ^a																		
Eating window (h)	0.100	0.140	0.185	0.156	0.160	0.232	0.099	-	0.099	0.118	0.158	0.472	0.749	-	0.902	0.990	0.770	0.554
Caloric midpoint (h)	0.562	0.441	0.489	0.705	0.817	0.925	0.387	-	0.385	0.386	0.421	0.200	0.773	-	0.919	0.533	0.513	0.328
Eating jetlag (h)	0.871	0.684	0.577	0.542	0.330	0.339	0.940	-	0.934	0.890	0.715	0.847	0.624	-	0.503	0.340	0.263	0.235
Time from midsleep point to first food intake (h) ^b	0.037	0.026	0.037	0.050	0.011	0.033	0.156	-	0.166	0.176	0.059	0.333	0.107	-	0.141	0.260	0.147	0.078
Time from last food intake to midsleep point (h) ^b	0.585	0.281	0.260	0.376	0.200	0.289	0.973	-	0.974	0.989	0.696	0.905	0.129	-	0.111	0.183	0.107	0.133
Triglycerides																		
Eating window (h)	0.013	0.015	0.014	0.014	0.032	0.044	0.127	-	0.105	0.166	0.150	0.374	0.068	-	0.074	0.069	0.220	0.149
Caloric midpoint (h)	0.730	0.704	0.705	0.586	0.620	0.636	0.371	-	0.409	0.362	0.314	0.163	0.844	-	0.804	0.810	0.700	0.594
Eating jetlag (h)	0.502	0.508	0.506	0.471	0.450	0.405	0.150	-	0.120	0.140	0.222	0.146	0.650	-	0.617	0.651	0.599	0.611
Time from midsleep point to first food intake (h) ^b	0.209	0.207	0.210	0.178	0.042	0.078	0.066	-	0.047	0.044	0.012	0.072	0.823	-	0.777	0.819	0.846	0.723
Time from last food intake to midsleep point (h) ^b	0.103	0.126	0.129	0.155	0.315	0.230	0.516	-	0.506	0.299	0.141	0.221	0.005	-	0.006	0.006	0.012	0.009
Total cholesterol																		
Eating window (h)	0.577	0.519	0.540	0.564	0.410	0.457	0.451	-	0.423	0.440	0.234	0.544	0.878	-	0.946	0.890	0.951	0.874
Caloric midpoint (h)	0.892	0.848	0.834	0.973	0.769	0.784	0.579	-	0.606	0.601	0.388	0.210	0.516	-	0.470	0.635	0.671	0.724
Eating jetlag (h)	0.346	0.337	0.351	0.337	0.199	0.186	0.409	-	0.377	0.389	0.343	0.239	0.604	-	0.645	0.577	0.469	0.477
Time from midsleep point to first food intake (h) ^b	0.505	0.509	0.210	0.469	0.288	0.356	0.090	-	0.062	0.063	0.039	0.210	0.380	-	0.346	0.410	0.510	0.455
Time from last food intake to midsleep point $(h)^{b}$	0.936	0.800	0.129	0.901	0.898	0.952	0.347	-	0.337	0.252	0.184	0.288	0.218	-	0.234	0.260	0.322	0.347
High-density lipoprotein cholesterol																		
Eating window (h)	0.010	0.011	0.012	0.012	0.007*	0.009	0.009	-	0.012	0.034	0.015	0.050	0.208	-	0.208	0.217	0.214	0.051
Caloric midpoint (h)	0.560	0.665	0.646	0.713	0.989	0.956	0.237	_	0.272	0.321	0.419	0.580	0.855	-	0.865	0.923	0.763	0.942
Eating ietlag (h)	0.964	0.918	0.875	0.917	0.889	0.971	0.296	_	0.349	0.412	0.669	0.543	0.379	-	0.371	0.345	0.401	0.384
Time from midsleep point to first food intake $(h)^{b}$	0.014	0.006*	0.006*	0.005*	0.008*	0.020	0.016	_	0.023	0.013	0.010	0.066	0.106	-	0.106	0.120	0.179	0.046
Time from last food intake to midsleep point (h) ^b	0.774	0.796	0.783	0.722	0.996	0.764	0.966	-	0.931	0.523	0.538	0.761	0.721	-	0.719	0.757	0.978	0.802
Low-density lipoprotein cholesterol																		
Eating window (h)	0.345	0.344	0.384	0.398	0.212	0.262	0.329	-	0.328	0.377	0.363	0.412	0.730	-	0.814	0.778	0.835	0.787
Caloric midpoint (h)	0.830	0.828	0.799	0.910	0.639	0.663	0.963	-	0.963	0.989	0.697	0.452	0.812	-	0.742	0.845	0.896	0.932
Eating jetlag (h)	0.313	0.315	0.347	0.332	0.173	0.142	0.349	-	0.345	0.367	0.331	0.213	0.637	-	0.693	0.646	0.450	0.448
Time from midsleep point to first food intake (h) ^b	0.139	0.141	0.151	0.132	0.102	0.164	0.058	-	0.046	0.045	0.038	0.235	0.953	-	0.990	0.957	0.932	0.889
Time from last food intake to midsleep point (h) ^b	0.665	0.696	0.686	0.609	0.581	0.667	0.401	-	0.399	0.257	0.248	0.385	0.784	-	0.822	0.844	0.854	0.829
HOMA-IR																		
Eating window (h)	<0.001*	<0.001*	<0.001*	<0.001*	0.001*	0.001*	<0.001*	-	<0.001*	< 0.001*	<0.001*	0.002	0.369	-	0.459	0.541	0.659	0.367
Caloric midpoint (h)	0.399	0.372	0.392	0.431	0.553	0.539	0.932	-	0.042	0.845	0.915	0.411	0.245	-	0.299	0.737	0.674	0.896
Eating jetlag (h)	0.393	0.398	0.434	0.429	0.520	0.418	0.623	-	0.579	0.670	0.873	0.685	0.499	-	0.573	0.719	0.668	0.615
Time from midsleep point to first food intake (h) ^b	0.002*	0.001*	0.002*	0.002*	<0.001*	0.001*	0.003	-	0.002*	0.001*	<0.001*	0.004	0.271	-	0.320	0.481	0.340	0.160
Time from last food intake to midsleep point (h) ^b	0.579	0.679	0.699	0.644	0.804	0.493	0.511	-	0.520	0.928	0.871	0.618	0.867	-	0.806	0.930	0.787	0.946
Cardiometabolic risk score ^c																		
Eating window (h)	0.002*	0.002*	0.002*	0.002*	0.002*	<0.001*	0.003*	-	0.002*	0.003*	0.003*	0.011	0.210	-	0.233	0.257	0.347	0.041
Caloric midpoint (h)	0.604	0.604	0.619	0.776	0.639	0.654	0.823	-	0.815	0.885	0.963	0.521	0.388	-	0.421	0.852	0.682	0.931
Eating jetlag (h)	0.914	0.926	0.962	0.938	0.889	0.843	0.618	-	0.604	0.687	0.741	0.473	0.700	-	0.655	0.574	0.667	0.531
Time from midsleep point to first food intake (h) ^b	0.002*	0.002*	0.002*	0.002*	<0.001*	<0.001*	0.003*	-	0.002*	0.002*	<0.001*	0.006	0.267	-	0.285	0.464	0.223	0.018
Time from last food intake to midsleep point $(h)^{b}$	0.832	0.841	0.857	0.749	0.987	0.638	0.993	-	0.992	0.815	0.589	0.965	0.787	-	0.819	0.584	0.843	0.622

P values are obtained for Model 0 (single linear regression), then analyses were adjusted for: sex (only in all, Model 1); sex and *a priori* Mediterranean diet pattern (MeD-P) (Model 2); sex, *a priori* Mediterranean diet pattern and light physical activity (min/day)^d (Model 3); sex, *a priori* Mediterranean diet pattern, light physical activity (min/day) and midsleep point (h)^e (Model 4); sex, *a priori* Mediterranean diet pattern, light physical activity (min/day), midsleep point (h) and body mass index (kg/m²)^f (Model 5). Sex was included only when men and women were analysed together (i.e., all). In *time from midsleep point to breakfast* and *time from dinner to midsleep point* model 4 and 5 included sleep duration (h) instead of midsleep point. All cardiometabolic risk factors (except for mean blood pressure and cardiometabolic risk score) were log10-transformed to bring their distributions closer to normal. Cardiometabolic risk score was calculated for each sex based on waist circumference, blood pressure, plasma glucose, high-density lipoprotein cholesterol, and triglyceride concentrations (see methods for further details). Symbol * these associations remained statistically significant after applying false discovery rate correction (Benjamini-Hochberg). Some specific outcomes had missing data for all: ^{a,d,f}1 missing participants, ^{b,e}4 missing participants, and ^{c7} missing participants; for men: ^{c3} missing participants and ^{e,f}1 missing participant; and for women: ^{a,d}1 missing participants. Abbreviations: HOMA-IR, homeostasis model assessment of insulin resistance; M, Model.

Table S4. Differences between breakfast skipper and consumer in body composition, cardiometabolic risk factors, physical activity, sleep patterns, dietary patterns, and energy and macronutrients intake.

	All		Men		Women			
	Skip. (N)= 29; Cons	. (N)= 88	Skip. (N)= 10; Cons.	(N)=26	Skip. (N)= 19; Cons. (N)= 62			
	MD (95% CI)	P-value	MD (95% CI)	P-value	MD (95% CI)	P-value		
Body mass index (Kg/m ²) ^a	0.7 (-1.7, 3.1)	0.551	1.3 (-4.3, 6.9)	0.619	0.3 (-2.1, 2.7)	0.816		
Fat mass (kg) ^a	1.3 (-3.1, 5.7)	0.564	2.4 (-8.2, 13)	0.630	0.6 (-4.1, 5.4)	0.78		
Fat mass (%) ^a	-0.3 (-3.6, 3.0)	0.856	0.8 (-5.0, 6.7)	0.768	-0.4 (-4.1, 3.3)	0.810		
Lean mass index $(Kg m^2)^a$	0.4 (-0.8, 1.6)	0.697	0.6 (-1.7, 3.0)	0.569	0.1 (-0.6, 0.9)	0.897		
Visceral adipose tissue mass (g) ^a	23.9 (-73.8, 121.6)	0.494	41.5 (-155.1, 238.2)	0.650	9.0 (-102.0, 120.1)	0.868		
Waist circumference (cm) ^b	1.4 (-6.2, 9.1)	0.702	3.7 (-12.8, 20.2)	0.634	-0.6 (-7.6, 6.5)	0.872		
Systolic blood pressure (mmHg) ^c	0.9 (-4.6, 6.5)	0.734	0.3 (-10.5, 11.2)	0.948	-0.2 (-4.9, 4.5)	0.926		
Diastolic blood pressure (mmHg) ^c	2.6 (-0.9, 6.2)	0.141	4.2 (-3.9, 12.3)	0.284	1.5 (-2.1, 5.2)	0.387		
Mean blood pressure (mmHg) ^c	2.1 (-1.7, 5.9)	0.275	2.9 (-5.1, 10.9)	0.445	1.0 (-2.6, 4.5)	0.587		
Triglycerides (mg/dl)	19.7 (-12.8, 52.2)	0.227	42.6 (-25.6, 110.8)	0.196	7.5 (-30.4, 45.4)	0.684		
Total cholesterol (mg/dl)	7.1 (-9, 23.1)	0.378	24.3 (-8.8, 57.5)	0.136	-0.9 (-19.9, 18.0)	0.920		
High-density lipoprotein cholesterol (mg/dl)	-0.5 (-5.7, 4.7)	0.848	-2.9 (-9.2, 3.4)	0.343	1.5 (-4.7, 7.6)	0.629		
Low-density lipoprotein cholesterol (mg/dl)	6.5 (-6.3, 19.4)	0.311	20.3 (-3.2, 43.7)	0.085	-0.3 (-16.2, 15.6)	0.968		
Glucose (mg/dl)	5.2 (1.9, 8.4)	0.003	9.1 (2.2, 16.0)	0.014	3.0 (-0.1, 6.0)	0.06		
Insulin (µIU/ml)	3.5 (-0.3, 7.3)	0.068	8.3 (-2.2, 18.7)	0.108	1.0 (-1.4, 3.3)	0.045		
HOMA-IR	1.0 (0.0, 2.0)	0.057	2.4 (-0.6, 5.3)	0.100	0.3 (-0.3, 0.9)	0.324		
Cardiometabolic risk score ^d	0.2 (-0.1, 0.6)	0.233	0.5 (-0.2, 1.3)	0.150	0.1 (-0.4, 0.5)	0.792		
Physical activity (ENMO/day) ^e	0.1 (-1.8, 2.0)	0.924	-2.7 (-5.5, 0.2)	0.066	1.5 (-0.8, 3.9)	0.196		
Sedentary time (min/day) ^e	-7.3 (-33.1, 18.5)	0.571	3 (-35.5, 41.5)	0.875	-13.8 (-48.4, 20.7)	0.419		
Cardiorespiratory fitness (ml/kg/min)	1.1 (-3.1, 5.2)	0.604	-0.6 (-9.1, 8.0)	0.894	1.5 (-3.2, 6.3)	0.517		
Sleep duration (h) ^f	0.0 (-0.5, 0.5)	0.866	0.3 (-0.6, 1.2)	0.524	-0.2 (-0.8, 0.4)	0.427		
Midsleep point (h) ^f	0.4 (-0.1, 1.0)	0.102	0 (-1.1, 1.1)	0.998	0.6 (0.0, 1.3)	0.045		
Social jet lag (h) ^f	-0.3 (-0.8, 0.2)	0.246	-0.5 (-1.3, 0.2)	0.141	-0.1 (-0.8, 0.5)	0.655		
MeD-P	-2.4 (-4.3, -0.5)	0.013	-1.5 (-4.8, 1.7)	0.336	-2.7 (-5.1, -0.3)	0.028		
MeD-S ^g	-0.6 (-1.3, 0.0)	0.050	-0.7 (-2.3, 0.9)	0.374	-0.6 (-1.2, 0.0)	0.068		
MeD-DQI ^h	1.3 (0.4, 2.3)	0.007	1.2 (-0.7, 3)	0.208	1.3 (0.2, 2.4)	0.024		
DASH ⁱ	-1.4 (-3.3, 0.4)	0.129	-1.4 (-5.4, 2.5)	0.452	-1.4 (-3.2, 0.4)	0.132		
DQI	0.6 (-0.4, 1.6)	0.215	0.5 (-1.3, 2.3)	0.553	0.6 (-0.6, 1.8)	0.330		
DII	0.5 (-0.1, 1.1)	0.087	1.2 (0.3, 2.2)	0.015	0.2 (-0.6, 1.0)	0.581		
Energy intake (kcal/day)	-24.5 (-230.2, 181.2)	0.812	-210.2 (-588.0, 167.6)	0.262	38.6 (-209.6, 286.7)	0.752		
Energy density (kcal/g)	0.1 (-0.1, 0.2)	0.542	0.0 (-0.3, 0.3)	0.797	0.1 (-0.1, 0.3)	0.383		
Carbohydrates (% energy)	-1.4 (-4.1, 1.2)	0.292	-0.2 (-5.0, 4.6)	0.925	-1.8 (-5.0, 1.5)	0.283		
Protein (% energy)	-0.2 (-1.4, 1.0)	0.718	-1.3 (-3.6, 1.0)	0.244	0.2 (-1.2, 1.6)	0.784		
Fat (% energy)	2.1 (-0.5, 4.7)	0.104	2.8 (-2.4, 8.1)	0.273	1.7 (-1.3, 4.7)	0.261		
Eating window (h)	-2.0 (-2.6, -1.3)	<0.001	-2.2 (-3.5, -0.9)	0.004	-1.9 (-2.7, -1.1)	<0.001		
Caloric midpoint (h)	1.3 (0.5, 2.1)	0.002	0.4 (-1.1, 1.8)	0.588	1.7 (0.8, 2.7)	0.001		
Eating jetlag (h)	0.9 (0.3, 1.5)	0.003	1.0 (-0.2, 2.2)	0.095	0.9 (0.2, 1.6)	0.018		
Time from midsleep point to first food intake (h)	1.8 (1.2, 2.3)	<0.001	2.2 (0.9, 3.5)	0.003	1.6 (1.0, 2.1)	<0.001		
Time from last food intake to midsleep point (h)	0.3 (-0.2, 0.8)	0.224	-0.1 (-0.9, 0.8)	0.885	0.5 (-0.2, 1.1)	0.150		

Values obtained from Welch's t-test (breakfast skippers – consumers). Cardiometabolic risk score was calculated for each sex based on waist circumference, blood pressure, plasma glucose, high-density lipoprotein cholesterol, and triglyceride concentrations (see methods for further details). A higher MeD-P and MeD-S represents greater adherence to the Mediterranean diet, whereas the higher the MeD-DQI score, the lower the Mediterranean diet quality. A higher DASH score represents greater adherence to the DASH guidelines. A lower DQI score represents a higher diet quality. The higher the DII score, the more inflammatory the diet. Some specific outcomes had missing data for all: ^a2 missing participants (one skipper and one consumer), ^b4 missing participants (two skippers and two consumers), ^c3 missing participants (one skipper and two consumers), ^e1 missing subject (one consumer), ^f4 missing participants (two skippers and two consumers), ^e1 missing participants (consumers), ^g3 missing participants (two skippers and two consumers), ^{e1}4 missing subject (one consumer), ^{d3} missing participants (one skipper and two consumers), ^{e1}4 missing subject (one consumer), ^{d4} missing participants (two skippers and two consumers), ^{e.e.g.hi}1 missing subject (one consumer), ^{d3} missing participants (one skipper and two consumers), ^{e.g.hi}1 missing subject (one consumer), and ^{f3} missing participants (one skipper and two consumers), ^{e.g.hi}1 missing subject (one consumer), and ^{f3} missing participants (one skipper and two consumers), ^{e.g.hi}1 missing subject (one consumer), and ^{f3} missing participants (one skipper and two consumers), ^{e.g.hi}1 missing subject (one consumer), ^{d4} missing participants (one skipper and two consumers), ^{e.g.hi}1 missing subject (one consumer), ^{d4} missing participants (two skippers and two c

Figure S1. Flow-chart for subject enrolment. BMI: body mass index, ECG: electrocardiogram.

Figure S2. Scatterplots of the associations of eating window and time from midsleep point to first food intake with cardiometabolic risk factors (only significant associations from table 3 are shown) in young adults. Adjusted R^2 , β standardized regression coefficients and P values are obtained from single linear regressions. All cardiometabolic risk factors (except for mean blood pressure) were log10-transformed to bring their distributions closer to normal. Abbreviations: HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance.

Figure S3. Pearson correlation of meal timing with energy and macronutrients intake, dietary patterns, physical activity and sleep patterns in young adults. Boxes only represent the statistically significant ($P \le 0.05$) correlations and the value within the boxes show the Pearson correlation coefficient. Blue boxes indicate positive correlation whereas red squares indicate negative correlation. Abbreviation: CHO, carbohydrates; MeD-P, *a priori* Mediterranean dietary pattern; MeD-S, Mediterranean diet score; MeD-DQI, dietary quality index for the Mediterranean diet; DASH, dietary approaches to stop hypertension; DQI, dietary quality indices; DII, dietary inflammatory index; PA, physical activity.

Figure S4. Scatterplots of the associations of eating window and time from midsleep point to first food intake with body composition in breakfast consumers. R^2 adjusted, β standardized regression coefficients and P values are showed from single linear regressions. Abbreviations: BMI, body mass index; VAT, visceral adipose tissue.

Figure S5. Scatterplots of the associations of eating window and time from midsleep point to first food intake with cardiometabolic risk factors (only those associations which were significant in table 3 are shown) in breakfast consumers. R^2 adjusted, β standardized regression coefficients and P values are showed from single linear regressions. All cardiometabolic risk factors (except for mean blood pressure and cardiometabolic risk score) were log10-transformed to bring their distributions closer to normal. Cardiometabolic risk score was calculated for each sex based on waist circumference, blood pressure, plasma glucose, high-density lipoprotein cholesterol, and triglyceride concentrations (see methods for further details). Abbreviations: HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment index.