Association between nutrient intake related to the one-carbon metabolism and colorectal cancer risk: a case-control study in the Basque Country

Silvia Martín-Fernández-de Labastida, Iker Alegria-Lertxundi, Marian M. de Pancorbo, Marta Arroyo-Izaga*

*Correspondence: Marta Arroyo-Izaga, BIOMICs Research Group, Microfluidics & BIOMICs Cluster, Department of Pharmacy and Food Sciences, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba/Álava, Spain; Bioaraba, BA04.03, Vitoria-Gasteiz, Araba/Álava, Spain. marta.arroyo@ehu.eus

controls)					
Characteristics	Cases (n=308)		Controls	(n=308)	р
Sex, % of men	66.2		66.2		
Age, y, mean SD	61.5	5.2	61.1	5.5	0.093
Smoking status, %					
Never	27.9		38.6		
Past/current	72.1		61.4		0.004
BMI, %					
Underweight	6.5		7.8		
Normal weight	26.0		34.1		
Overweight/obesity	67.5		58.1		0.033
PRM, % ¹					
L ₁₋₂	15.6		12.3		
L ₃₋₄	83.4		79.2		< 0.001
DI, % ¹					
Q ₁₋₃	47.1		65.6		
Q ₄₋₅	18.8		29.5		< 0.001

Supplementary Table S1. Descriptive socio-demographic and clinical data of the participants (cases vs controls)

¹Valid percentages

BMI body mass index, *DI* deprivation index (this index was successfully assigned to 80.2% of the study sample), L level, *PRM* predictive risk modelling (this index was successfully assigned to 95.1% of the study sample), Q quintile, *SD* standard deviation

Deile metrient inteles	Cases (n=	Cases (n=308)				Controls (n=308)					
Daily nument intake	Mean	SD	Median	P25	P75	Mean	SD	Median	P25	P75	p^a
Vitamins related to OCM											
Vitamin B ₂ , mg/d	1.5	0.5	1.4	1.2	1.7	1.6	0.5	1.5	1.2	1.9	0.100
Vitamin B ₃ , mg/d	30.1	7.1	30.2	24.3	35.0	30.3	7.7	29.7	25.2	34.0	0.893
Vitamin B ₆ , mg/d	2.7	14.3	1.8	1.5	2.1	1.9	0.6	1.8	1.5	2.2	0.378
Folate, µg/d	267.2	80.1	261.0	209.0	307.0	273.3	76.5	261.5	217.3	325.0	0.406
Vitamin B_{12} , $\mu g/d$	6.6	28.5 ^b	4.8	3.8	6.0	4.9	1.7	4.5	3.7	5.8	0.094
Other dietary methyl don	ors										
Methionine, mg/d	1753.7	644.6	1717.5	1218.5	2146.3	1894.2	747.6	1810.5	1255.8	2473.00	0.012
Choline, mg/d	134.7	85.4	120.5	80.8	170.0	163.2	85.0	147.0	99.3	212.8	<0.001
Betaine, mg/d	113.6	55.2	101.5	71.4	144.8	151.0	62.9	141.5	102.0	187.8	<0.001
Methyl donor index ^c	-4.1	1.3	-4.1	-4.9	-3.2	-4.0	1.3	-4.0	-4.8	-3.1	0.653

Supplementary Table S2. Daily intake of one-carbon metabolism nutrients in cases and control studied

^aDifferences between cases and controls. A value of p < 0.05 was considered significant. Significant results are highlighted in bold

^bThis high SD is due to the use of a nutritional supplement by one of the cases

^cThis variable follows a normal distribution (the rest of the variables follow a non-normal distribution). This index was derived by summing standardized intake values on the log scale [(value – mean)/SD] across the 8 individual nutrients

Met Methionine, OCM one-carbon metabolism, P25 25 percentile, P75 75 percentile, SD standard deviation

Supplementary Table 55. Top five food sources of total chomie and betanic among control subject							
Food sources	Proportion						
Total choline							
Eggs	24.9						
Sausage	7.9						
Lentils	7.9						
Beef	5.8						
Tuna	5.3						
Betaine							
Pasta	48.1						
Green beans	17.5						
Potatoes	11.1						
Beef	8.5						
Lettuce	4.9						

Supplementary Table S3. Top five food sources of total choline and betaine among control subjects

Nutrients ^a		Model I ^b		Model II ^c		Model III ^d	Model III ^d		
	Case/control(n)	OR (95% CI)	p^e	OR (95% CI)	p^e	OR (95% CI)	p^e		
Vitamin B ₂									
T1	89/82	1.00	-	1.00	-	1.00	-		
T2	55/58	0.88(055-1.40)	0.586	0.61(0.33-1.14)	0.122	0.50(0.21-1.16)	0.108		
Т3	60/64	0.86(0.54-1.38)	0.535	0.47(0.22-0.99)	0.046	0.59(0.20-1.79)	0.355		
Vitamin B ₃									
T1	72/73	1.00	-	1.00	-	1.00	-		
T2	56/59	0.97(0.58-1.61)	0.897	1.09(0.54-2.21)	0.813	1.01(0.37-2.77)	0.986		
T3	76/72	1.07(0.66-1.73)	0.779	1.00(0.55-1.83)	0.995	1.05(0.31-3.56)	0.938		
Vitamin Be									
T1	69/70	1.00	-	1.00	-	1.00	-		
T2	81/63	1.28(0.80-2.05)	0.308	0.96(0.51-1.81)	0.891	0.81(0.30-2.18)	0.680		
Т3	54/71	0.75(0.45-1.25)	0.266	0.61(0.30-1.25)	0.176	0.71(0.18-2.80)	0.625		
Folate									
T1	84/73	1.00	-	1.00	-	1.00	-		
T2	66/62	0.92(0.58-1.45)	0.704	0.88(0.49-1.56)	0.655	0.80(0.37-1.76)	0.585		
Т3	54/69	0.69(0.43-1.11)	0.123	0.67(0.36-1.26)	0.220	1.05(0.31-3.56)	0.955		
Vitamin B ₁	2								
T1	54/68	1.00	-	1.00	-	1.00	-		
T2	73/68	1.33(0.82-2.14)	0.248	1.28(0.70-2.33)	0.422	1.58(0.66-3.80)	0.302		
Т3	77/68	1.41(0.87-2.30)	0.162	1.85(0.85-4.01)	0.119	2.62(0.88-7.74)	0.082		
Met									
T1	70/68	1.00	-	1.00	-	1.00	-		
T2	66/69	0.93(0.58-1.50)	0.768	0.87(0.48-1.58)	0.646	0.86(0.42-1.78)	0.692		
Т3	68/67	0.98(0.60-1.61)	0.942	0.67(0.34-1.32)	0.251	0.72(0.32-1.64)	0.434		

Supplementary	⁷ Table S4.	Association between	the intake of	nutrients related	to one-carbon	metabolism and	d colorectal	cancer risk in m	er
---------------	------------------------	---------------------	---------------	-------------------	---------------	----------------	--------------	------------------	----

Choline							
T1	92/71	1.00	-	1.00	-	1.00	-
T2	68/73	0.72(0.46-1.13)	0.155	0.77(0.43-1.38)	0.379	0.74(0.35-1.55)	0.421
Т3	44/60	0.55(0.33-0.92)	0.024	0.64(0.34-1.22)	0.174	0.75(0.34-1.64)	0.469
Betaine							
T1	122/65	1.00	-	1.00	-	1.00	-
T2	46/67	0.39(0.23-0.64)	<0.001	0.62(0.34-1.15)	0.128	0.58(0.28-1.21)	0.149
Т3	36/72	0.29(0.18-0.49)	<0.001	0.30(0.16-0.56)	<0.001	0.27(0.13-0.58)	<0.001
Methyl dono	or index ^{f,g}						
T1	98/61	1.00	-	1.00	-	-	-
T2	75/71	0.63(0.40-1.02)	0.058	0.42(0.22-0.78)	0.006	-	-
T3	31/72	0.28(0.16-0.48)	<0.001	0.19(0.09-0.41)	<0.001	-	-

^aNutrients related to one-carbon metabolism were categorized into tertiles according to the distribution in controls; Tertiles of vitamin B₂ (mg/d): T1 < 1.4, T2 1.4–1.7, T3 > 1.7; vitamin B₃ (mg/d): T1 < 26.5, T2 26.5–32.4, T3 > 32.4; vitamin B₆ (mg/d): T1 < 1.6, T2 1.6–2.0, T3 > 2.0; folate (μ g/d): T1 < 238.0, T2 238.0–298.0, T3 > 298.0; vitamin B₁₂ (μ g/d): T1 < 4.0, T2 4.0–5.3, T3 > 5.3; methyl donor index: T1 < -4.46; T2 -4.46–3.47, T3 > -3.47; Met (mg/d) for men: T1 < 1377.0, T2 1377.0–1985.0, T3 > 1985.0; Met (mg/d) for women: T1 < 1665.0, T2 1665.0–2531.0, T3 > 2531.0; total choline (mg/d): T1 < 117.0, T2 117.0–187.0, T3 > 187.0; betaine (mg/d): T1 < 119.0, T2 119.0–170.0, T3 > 170.0

^bModel I, analyses were performed using crude conditional logistic regression, without considering confounding factors

^cModel II, analyses were performed using conditional logistic regression analysis adjusted for age (50–59 years old, 60–69 years old), sex, body mass index (underweight/normal weight, overweight/obesity), energy intake (kcal/d), physical exercise level (< 15 min/d of cycling/sports, \geq 15 min/d), smoking status and intensity of smoking (never; past: quit smoking \geq 11 years ago, quit < 11 years ago; smoker: \leq 15 cigarettes/d, > 15 cigarettes/d), alcohol intake (standard unit drinks/d, tertiles in controls: men: T1 < 0.36, T2 0.36–1.13, T3 > 1.13; women: T1 < 0.08, T2 0.8–0.69, T3 > 0.69), Deprivation Index (quintile 1–3, quintile 4–5) and Predictive Risk Modelling (level 1–2, level 3–4), including nutrient intakes separately; participants with missing data for the confounding variables were included as a separate category for these variables

^dModel III, model II including all the nutrients related to one-carbon metabolism

^eA value of p < 0.05 was considered significant. Significant results are highlighted in bold

^fModel III is not applicable because this index includes all nutrients in its construction

^gThis index was derived by summing standardized intake values on the log scale [(value - mean)/SD] across the 8 individual nutrients

CI Confidence interval, Met Methionine, OR Odds ratio, T Tertile

		Model I ^b		Model II ^c		Model III ^d		
Nutrients ^a	Case/control(n)	OR (95% CI)	p^e	OR (95% CI)	p^e	OR (95% CI)	p^e	
Vitamin B ₂	2							
T1	29/26	1.00	-	1.00	-	1.00	-	
T2	34/44	0.73(0.38-1.42)	0.356	0.88(0.37-2.05)	0.760	3.63(0.06-221.1)	0.087	
Т3	41/34	1.10(0.55-2.21)	0.794	1.38(0.50-3.81)	0.533	37.2(0.04-31674.4)	0.085	
Vitamin B ₃	3							
T1	31/28	1.00	-	1.00	-	1.00	-	
T2	27/46	0.49(0.23-1.05)	0.065	0.18(0.05-0.66)	0.010	0.02(0.00-0.62)	0.027	
Т3	46/30	1.36(0.66-2.80)	0.402	0.78(0.22-2.74)	0.693	1.77(0.07-41.72)	0.724	
Vitamin Be	5							
T1	25/19	1.00	-	1.00	-	1.00	-	
T2	46/50	0.74(0.38-1.43)	0.367	0.55(0.22-1.33)	0.182	0.28(0.00-20.53)	0.563	
Т3	33/35	0.74(0.36-1.55)	0.430	0.48(0.18-1.33)	0.158	0.82(0.01-55.58)	0.928	
Folate								
T1	28/29	1.00	-	1.00	-	1.00	-	
T2	37/42	0.90(0.45-1.80)	0.769	0.45(0.17-1.15)	0.094	0.07(0.00-2.60)	0.150	
Т3	39/33	1.18(0.61-2.28)	0.622	0.67(0.27-1.64)	0.381	0.01(0.00-1.13)	0.056	
Vitamin B	2							
T1	32/34	1.00	-	1.00	-	1.00	-	
T2	35/35	1.07(0.54-2.13)	0.849	1.33(0.53-3.37)	0.542	0.04(0.00-1.39)	0.075	
Т3	37/35	1.13(0.57-2.25)	0.725	0.89(0.29-2.77)	0.844	0.01(0.00-1.94)	0.087	
Met								
T1	41/34	1.00	-	1.00	-	1.00	-	
T2	46/35	1.13(0.61-2.09)	0.708	1.14(0.54-2.42)	0.726	0.99(0.15-6.37)	0.992	
Т3	17/35	0.48(0.24-0.94)	0.034	0.31(0.11-0.86)	0.024	0.01(0.00-2.37)	0.098	

Supplementary Table S5. Association between the intake of nutrients related to one-carbon metabolism and colorectal cancer risk in women

Choline							
T1	55/32	1.00	-	1.00	-	1.00	-
T2	31/29	0.70(0.35-1.43)	0.330	0.35(0.12-0.98)	0.046	0.13(0.01-2.47)	0.176
Т3	18/43	0.27(0.13-0.56)	<0.001	0.21(0.07-0.60)	0.004	1.57(0.09-26.34)	0.755
Betaine							
T1	72/37	1.00	-	1.00	-	1.00	-
T2	18/37	0.26(0.12-0.54)	<0.001	0.28(0.11-0.74)	0.011	0.01(0.00-1.59)	0.077
Т3	14/30	0.26(0.12-0.56)	<0.001	0.18(0.06-050)	0.001	0.00(0.00-0.78)	0.041
Methyl don	nor index ^{f,g}						
T1	57/41	1.00	-	1.00	-	-	-
T2	37/32	0.92(0.46-1.86)	0.824	0.87(0.35-2.14)	0.762	-	-
Т3	10/31	0.27(0.12-0.61)	0.002	0.27(0.09-0.77)	0.015	-	-

^aNutrients related to one-carbon metabolism were categorized into tertiles according to the distribution in controls; Tertiles of vitamin B₂ (mg/d): T1 < 1.4, T2 1.4–1.7, T3 > 1.7; vitamin B₃ (mg/d): T1 < 26.5, T2 26.5–32.4, T3 > 32.4; vitamin B₆ (mg/d): T1 < 1.6, T2 1.6–2.0, T3 > 2.0; folate (μ g/d): T1 < 238.0, T2 238.0–298.0, T3 > 298.0; vitamin B₁₂ (μ g/d): T1 < 4.0, T2 4.0–5.3, T3 > 5.3; methyl donor index: T1 < -4.46; T2 -4.46–3.47, T3 > -3.47; Met (mg/d) for men: T1 < 1377.0, T2 1377.0–1985.0, T3 > 1985.0; Met (mg/d) for women: T1 < 1665.0, T2 1665.0–2531.0, T3 > 2531.0; total choline (mg/d): T1 < 117.0, T2 117.0–187.0, T3 > 187.0; betaine (mg/d): T1 < 119.0, T2 119.0–170.0, T3 > 170.0

^bModel I, analyses were performed using crude conditional logistic regression, without considering confounding factors

^cModel II, analyses were performed using conditional logistic regression analysis adjusted for age (50–59 years old, 60–69 years old), sex, body mass index (underweight/normal weight, overweight/obesity), energy intake (kcal/d), physical exercise level (< 15 min/d of cycling/sports, \geq 15 min/d), smoking status and intensity of smoking (never; past: quit smoking \geq 11 years ago, quit < 11 years ago; smoker: \leq 15 cigarettes/d, > 15 cigarettes/d), alcohol intake (standard unit drinks/d, tertiles in controls: men: T1 < 0.36, T2 0.36–1.13, T3 > 1.13; women: T1 < 0.08, T2 0.8–0.69, T3 > 0.69), Deprivation Index (quintile 1–3, quintile 4–5) and Predictive Risk Modelling (level 1–2, level 3–4), including nutrient intakes separately; participants with missing data for the confounding variables were included as a separate category for these variables

^dModel III, model II including all the nutrients related to one-carbon metabolism

^eA value of p < 0.05 was considered significant. Significant results are highlighted in bold

^fModel III is not applicable because this index includes all nutrients in its construction

^gThis index was derived by summing standardized intake values on the log scale [(value - mean)/SD] across the 8 individual nutrients

CI Confidence interval, Met Methionine, OR Odds ratio, T Tertile