Skip to main content
Erschienen in: Der Radiologe 4/2015

01.04.2015 | Leber und Gallenwege in der Radiologie | Leitthema

Techniken zur Leberfettquantifizierung bei der Risikostratifikation von Diabetikern

verfasst von: Prof. Dr. J.-P. Kühn, M.C. Spoerl, C. Mahlke, K. Hegenscheid

Erschienen in: Die Radiologie | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Klinisches/methodisches Problem

Die Fettleber scheint einen unmittelbaren Einfluss auf die Pathophysiologie des Diabetes mellitus Typ 2 zu besitzen. Zur Detektion und Quantifizierung des Leberfetts werden in der klinischen Diagnostik akkurate Verfahren gebraucht.

Radiologische Standardverfahren

Ein einfaches Verfahren ist die Chemical-shift-kodierte Magnetresonanztomographie (MRT).

Methodische Innovationen

Eine suffiziente Quantifizierung von Leberfett mithilfe der Chemical-shift-kodierten MRT erfordert eine Berücksichtigung von Störvariablen, wie den T2*-Zerfall, den T1-Wiederaufbau und die multispektrale Komplexität von Fett.

Leistungsfähigkeit

Eine Korrektur aller Störvariablen wird als Proton-density-Fettfraktion bezeichnet. Diese liefert unabhängig von der verwendeten Einstellung und Hardware reproduzierbare Ergebnisse.

Bewertung

Die korrigierte Proton-density-Fettfraktion ist ein akkurater Biomarker zur Quantifizierung von Leberfett.

Empfehlung für die Praxis

Die akkurate und reproduzierbare Quantifizierung von Leberfett in der MRT erfordert eine Berechnung der Proton-density-Fettfraktion.
Literatur
1.
Zurück zum Zitat Tamayo T, Rosenbauer J, Wild SH et al (2014) Diabetes in Europe: an update. Diabetes Res Clin Pract 103(2):206–217CrossRefPubMed Tamayo T, Rosenbauer J, Wild SH et al (2014) Diabetes in Europe: an update. Diabetes Res Clin Pract 103(2):206–217CrossRefPubMed
2.
Zurück zum Zitat Cusi K (2009) Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16(2):141–149CrossRefPubMed Cusi K (2009) Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16(2):141–149CrossRefPubMed
3.
Zurück zum Zitat Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes – pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2(6):335–348CrossRefPubMed Roden M (2006) Mechanisms of disease: hepatic steatosis in type 2 diabetes – pathogenesis and clinical relevance. Nat Clin Pract Endocrinol Metab 2(6):335–348CrossRefPubMed
4.
Zurück zum Zitat Völzke H, Robinson DM, Kleine V et al (2005) Hepatic steatosis is associated with an increased risk of carotid atherosclerosis. World J Gastroenterol 11(12):1848–1853CrossRefPubMedCentralPubMed Völzke H, Robinson DM, Kleine V et al (2005) Hepatic steatosis is associated with an increased risk of carotid atherosclerosis. World J Gastroenterol 11(12):1848–1853CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128(7):1898–1906CrossRefPubMed Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128(7):1898–1906CrossRefPubMed
6.
Zurück zum Zitat Levenson H, Greensite F, Hoefs J et al (1991) Fatty infiltration of the liver: quantification with phase-contrast MR imaging at 1.5 T vs biopsy. AJR Am J Roentgenol 156(2):307–312CrossRefPubMed Levenson H, Greensite F, Hoefs J et al (1991) Fatty infiltration of the liver: quantification with phase-contrast MR imaging at 1.5 T vs biopsy. AJR Am J Roentgenol 156(2):307–312CrossRefPubMed
7.
Zurück zum Zitat Kühn JP, Evert M, Friedrich N et al (2011) Noninvasive quantification of hepatic fat content using three-echo dixon magnetic resonance imaging with correction for t2* relaxation effects. Invest Radiol 46(12):783–789CrossRefPubMed Kühn JP, Evert M, Friedrich N et al (2011) Noninvasive quantification of hepatic fat content using three-echo dixon magnetic resonance imaging with correction for t2* relaxation effects. Invest Radiol 46(12):783–789CrossRefPubMed
8.
Zurück zum Zitat Fishbein M, Castro F, Cheruku S et al (2005) Hepatic MRI for fat quantitation: its relationship to fat morphology, diagnosis, and ultrasound. J Clin Gastroenterol 39(7):619–625CrossRefPubMed Fishbein M, Castro F, Cheruku S et al (2005) Hepatic MRI for fat quantitation: its relationship to fat morphology, diagnosis, and ultrasound. J Clin Gastroenterol 39(7):619–625CrossRefPubMed
9.
Zurück zum Zitat Rinella ME, McCarthy R, Thakrar K et al (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: implications for living liver donation. Liver Transpl 9(8):851–856CrossRefPubMed Rinella ME, McCarthy R, Thakrar K et al (2003) Dual-echo, chemical shift gradient-echo magnetic resonance imaging to quantify hepatic steatosis: implications for living liver donation. Liver Transpl 9(8):851–856CrossRefPubMed
10.
Zurück zum Zitat Jung EM, Wiggermann P, Stroszczynski C et al (2012) Ultrasound diagnostics of diffuse liver diseases. Radiologe 52(8):706–716CrossRefPubMed Jung EM, Wiggermann P, Stroszczynski C et al (2012) Ultrasound diagnostics of diffuse liver diseases. Radiologe 52(8):706–716CrossRefPubMed
11.
12.
Zurück zum Zitat Zhang B, Ding F, Chen T et al (2014) Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content. World J Gastroenterol 20(47):17985–17992PubMedCentralPubMed Zhang B, Ding F, Chen T et al (2014) Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content. World J Gastroenterol 20(47):17985–17992PubMedCentralPubMed
13.
Zurück zum Zitat Schlett CL, Hoffmann U (2011) Identification and quantification of fat compartments with CT and MRI and their importance. Radiologe 51(5):372–378CrossRefPubMed Schlett CL, Hoffmann U (2011) Identification and quantification of fat compartments with CT and MRI and their importance. Radiologe 51(5):372–378CrossRefPubMed
14.
Zurück zum Zitat Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014CrossRefPubMed Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36(5):1011–1014CrossRefPubMed
15.
Zurück zum Zitat Kühn J-P, Hernando D, Mensel B et al (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39(6):1494–1501CrossRefPubMedCentralPubMed Kühn J-P, Hernando D, Mensel B et al (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39(6):1494–1501CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Kang GH, Cruite I, Shiehmorteza M et al (2011) Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 34(4):928–934CrossRefPubMed Kang GH, Cruite I, Shiehmorteza M et al (2011) Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. J Magn Reson Imaging 34(4):928–934CrossRefPubMed
17.
Zurück zum Zitat Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759CrossRefPubMedCentralPubMed Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759CrossRefPubMedCentralPubMed
18.
Zurück zum Zitat Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis1. Radiographics 29(1):231–260CrossRefPubMed Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis1. Radiographics 29(1):231–260CrossRefPubMed
19.
Zurück zum Zitat Bydder M, Shiehmorteza M, Yokoo T et al (2010) Assessment of liver fat quantification in the presence of iron. Magn Reson Imaging 28(6):767–776CrossRefPubMedCentralPubMed Bydder M, Shiehmorteza M, Yokoo T et al (2010) Assessment of liver fat quantification in the presence of iron. Magn Reson Imaging 28(6):767–776CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Westphalen ACA, Qayyum A, Yeh BM et al (2007) Liver fat: effect of hepatic iron deposition on evaluation with opposed-phase MR imaging. Radiology 242(2):450–455CrossRefPubMed Westphalen ACA, Qayyum A, Yeh BM et al (2007) Liver fat: effect of hepatic iron deposition on evaluation with opposed-phase MR imaging. Radiology 242(2):450–455CrossRefPubMed
21.
Zurück zum Zitat Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22(23):2171–2179CrossRefPubMed Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22(23):2171–2179CrossRefPubMed
22.
Zurück zum Zitat Au W-Y, Lam WW-M, Chu W et al (2008) A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica 93(1):116–119CrossRefPubMed Au W-Y, Lam WW-M, Chu W et al (2008) A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica 93(1):116–119CrossRefPubMed
23.
Zurück zum Zitat Wood JC (2011) Impact of iron assessment by MRI. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology Education Program, S 443–450 Wood JC (2011) Impact of iron assessment by MRI. Hematology/the Education Program of the American Society of Hematology. American Society of Hematology Education Program, S 443–450
24.
Zurück zum Zitat Sirlin CB, Reeder SB (2010) Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin North Am 18(3):359–381CrossRef Sirlin CB, Reeder SB (2010) Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin North Am 18(3):359–381CrossRef
25.
Zurück zum Zitat Bazelaire CMJ de, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659CrossRefPubMed Bazelaire CMJ de, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659CrossRefPubMed
26.
Zurück zum Zitat Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258(3):767–775CrossRefPubMedCentralPubMed Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258(3):767–775CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Johnson BL, Schroeder ME, Wolfson T et al (2014) Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 31(1):30–43 Johnson BL, Schroeder ME, Wolfson T et al (2014) Effect of flip angle on the accuracy and repeatability of hepatic proton density fat fraction estimation by complex data-based, T1-independent, T2*-corrected, spectrum-modeled MRI. J Magn Reson Imaging 31(1):30–43
28.
Zurück zum Zitat Hines CD, Yokoo T, Bydder M et al (2010) Optimization of flip angle to allow tradeoffs in T1 bias and SNR performance for fat quantification. The International Society of Magnetic Resonance in Medicine 18th Meeting. Stockholm, Schweden (abstract) Hines CD, Yokoo T, Bydder M et al (2010) Optimization of flip angle to allow tradeoffs in T1 bias and SNR performance for fat quantification. The International Society of Magnetic Resonance in Medicine 18th Meeting. Stockholm, Schweden (abstract)
29.
Zurück zum Zitat Kühn J-P, Hernando D, Muñoz Del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265(1):133–142CrossRefPubMedCentralPubMed Kühn J-P, Hernando D, Muñoz Del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265(1):133–142CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Yang IY, Cui Y, Wiens CN et al (2014) Fat fraction bias correction using T1 estimates and flip angle mapping. J Magn Reson Imaging 39(1):217–223CrossRefPubMed Yang IY, Cui Y, Wiens CN et al (2014) Fat fraction bias correction using T1 estimates and flip angle mapping. J Magn Reson Imaging 39(1):217–223CrossRefPubMed
31.
Zurück zum Zitat Reeder SB, Robson PM, Yu H et al (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29(6):1332–1339CrossRefPubMedCentralPubMed Reeder SB, Robson PM, Yu H et al (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29(6):1332–1339CrossRefPubMedCentralPubMed
32.
Zurück zum Zitat Hernando D, Vigen KK, Shimakawa A, Reeder SB (2012) R*(2) mapping in the presence of macroscopic B0 field variations. Magn Reson Med 68(3):830–840CrossRefPubMedCentralPubMed Hernando D, Vigen KK, Shimakawa A, Reeder SB (2012) R*(2) mapping in the presence of macroscopic B0 field variations. Magn Reson Med 68(3):830–840CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat George DK, Goldwurm S, MacDonald GA et al (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114(2):311–318CrossRefPubMed George DK, Goldwurm S, MacDonald GA et al (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114(2):311–318CrossRefPubMed
34.
Zurück zum Zitat Bonkovsky HL, Jawaid Q, Tortorelli K et al (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31(3):421–429CrossRefPubMed Bonkovsky HL, Jawaid Q, Tortorelli K et al (1999) Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. J Hepatol 31(3):421–429CrossRefPubMed
35.
Zurück zum Zitat Van Beers BE (2014) Science to practice: can we diagnose nonalcoholic steatohepatitis with intravoxel incoherent motion diffusion-weighted MR imaging? Radiology 270(1):1–2 Van Beers BE (2014) Science to practice: can we diagnose nonalcoholic steatohepatitis with intravoxel incoherent motion diffusion-weighted MR imaging? Radiology 270(1):1–2
36.
Zurück zum Zitat Wu Z, Matsui O, Kitao A et al (2013) Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J Magn Reson Imaging 37(5):1137–1143CrossRefPubMed Wu Z, Matsui O, Kitao A et al (2013) Usefulness of Gd-EOB-DTPA-enhanced MR imaging in the evaluation of simple steatosis and nonalcoholic steatohepatitis. J Magn Reson Imaging 37(5):1137–1143CrossRefPubMed
Metadaten
Titel
Techniken zur Leberfettquantifizierung bei der Risikostratifikation von Diabetikern
verfasst von
Prof. Dr. J.-P. Kühn
M.C. Spoerl
C. Mahlke
K. Hegenscheid
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Radiologie / Ausgabe 4/2015
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-014-2720-9

Weitere Artikel der Ausgabe 4/2015

Der Radiologe 4/2015 Zur Ausgabe

Berufsverband der Deutschen Radiologen (BDR) - Mitteilungen

Mitteilungen BDR

Akademiekalender

Akademiekalender

Praxisempfehlungen der Deutschen Diabetes Gesellschaft

Kurz, prägnant und aktuell: Die Praxisempfehlungen der Deutschen Diabetes Gesellschaft.