Skip to main content
Erschienen in: Journal of Neurology 1/2016

01.01.2016 | Original Communication

The neural correlates of motor intentional disorders in patients with subcortical vascular cognitive impairment

verfasst von: Geon Ha Kim, Sang Won Seo, Kihyo Jung, Oh-Hun Kwon, Hunki Kwon, Jong Hun Kim, Jee Hoon Roh, Min-Jeong Kim, Byung Hwa Lee, Doo Sang Yoon, Jung Won Hwang, Jong Min Lee, Jee Hyang Jeong, Heecheon You, Kenneth M. Heilman, Duk L. Na

Erschienen in: Journal of Neurology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Subcortical vascular cognitive impairment (SVCI) refers to cognitive impairment associated with small vessel disease. Motor intentional disorders (MID) have been reported in patients with SVCI. However, there are no studies exploring the neuroanatomical regions related to MID in SVCI patients. The aim of this study, therefore, was to investigate the neural correlates of MID in SVCI patients. Thirty-one patients with SVCI as well as 10 healthy match control participants were included. A “Pinch-Grip” apparatus was used to quantify the force control capabilities of the index finger in four different movement phases including initiation, development, maintenance, and termination. All participants underwent magnetic resonance imaging (MRI). Topographical cortical areas and white matter tracts correlated with the performances of the four different movement phases were assessed by the surface-based morphometry and tract-based spatial statistics analyses. Poorer performance in the maintenance task was related to cortical thinning in bilateral dorsolateral prefrontal, orbitofrontal and parietal cortices, while poorer performance in the termination task was associated with the disruption of fronto-parietal cortical areas as well as the white matter tracts including splenium and association fibers such as superior longitudinal fasciculus. Our study demonstrates that cortical areas and underlying white matter tracts associated with fronto-parietal attentional system play an important role in motor impersistence and perseveration in SVCI patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kim SH, Park JS, Ahn HJ, Seo SW, Lee JM, Kim ST, Han SH, Na DL (2011) Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits. J Neuroimaging 21:317–324CrossRefPubMed Kim SH, Park JS, Ahn HJ, Seo SW, Lee JM, Kim ST, Han SH, Na DL (2011) Voxel-based analysis of diffusion tensor imaging in patients with subcortical vascular cognitive impairment: correlates with cognitive and motor deficits. J Neuroimaging 21:317–324CrossRefPubMed
2.
Zurück zum Zitat Kim CH, Seo SW, Kim GH, Shin JS, Cho H, Noh Y, Kim SH, Kim MJ, Jeon S, Yoon U, Lee JM, Oh SJ, Kim JS, Kim ST, Lee JH, Na DL (2012) Cortical thinning in subcortical vascular dementia with negative 11C-PiB PET. J Alzheimers Dis 31:315–323PubMed Kim CH, Seo SW, Kim GH, Shin JS, Cho H, Noh Y, Kim SH, Kim MJ, Jeon S, Yoon U, Lee JM, Oh SJ, Kim JS, Kim ST, Lee JH, Na DL (2012) Cortical thinning in subcortical vascular dementia with negative 11C-PiB PET. J Alzheimers Dis 31:315–323PubMed
3.
Zurück zum Zitat Seo SW, Ahn J, Yoon U, Im K, Lee JM, Tae Kim S, Ahn HJ, Chin J, Jeong Y, Na DL (2010) Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimag 20:37–45CrossRef Seo SW, Ahn J, Yoon U, Im K, Lee JM, Tae Kim S, Ahn HJ, Chin J, Jeong Y, Na DL (2010) Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimag 20:37–45CrossRef
5.
Zurück zum Zitat Seo SW, Jung K, You H, Lee BH, Kim GM, Chung CS, Lee KH, Na DL (2009) Motor-intentional disorders in right hemisphere stroke. Cogn Behav Neurol 22:242–248CrossRefPubMed Seo SW, Jung K, You H, Lee BH, Kim GM, Chung CS, Lee KH, Na DL (2009) Motor-intentional disorders in right hemisphere stroke. Cogn Behav Neurol 22:242–248CrossRefPubMed
6.
Zurück zum Zitat Yoon DS, Jung K, Kim GH, Kim SH, Lee BH, Seo SW, You H, Na DL (2014) Motor intentional disorders in vascular mild cognitive impairment and vascular dementia of subcortical type. Neurocase 20:53–60CrossRef Yoon DS, Jung K, Kim GH, Kim SH, Lee BH, Seo SW, You H, Na DL (2014) Motor intentional disorders in vascular mild cognitive impairment and vascular dementia of subcortical type. Neurocase 20:53–60CrossRef
7.
Zurück zum Zitat Chamorro A, Marshall RS, Valls-Sole J, Tolosa E, Mohr JP (1997) Motor behavior in stroke patients with isolated medial frontal ischemic infarction. Stroke 28:1755–1760CrossRefPubMed Chamorro A, Marshall RS, Valls-Sole J, Tolosa E, Mohr JP (1997) Motor behavior in stroke patients with isolated medial frontal ischemic infarction. Stroke 28:1755–1760CrossRefPubMed
8.
Zurück zum Zitat Kertesz A, Nicholson I, Cancelliere A, Kassa K, Black SE (1985) Motor impersistence: a right-hemisphere syndrome. Neurology 35:662–666CrossRefPubMed Kertesz A, Nicholson I, Cancelliere A, Kassa K, Black SE (1985) Motor impersistence: a right-hemisphere syndrome. Neurology 35:662–666CrossRefPubMed
9.
Zurück zum Zitat Inzitari D, Erkinjuntti T, Wallin A, Del Ser T, Romanelli M, Pantoni L (2000) Subcortical vascular dementia as a specific target for clinical trials. Ann N Y Acad Sci 903:510–521CrossRefPubMed Inzitari D, Erkinjuntti T, Wallin A, Del Ser T, Romanelli M, Pantoni L (2000) Subcortical vascular dementia as a specific target for clinical trials. Ann N Y Acad Sci 903:510–521CrossRefPubMed
10.
Zurück zum Zitat Gandola M, Toraldo A, Invernizzi P, Corrado L, Sberna M, Santilli I, Bottini G, Paulesu E (2013) How many forms of perseveration? Evidence from cancellation tasks in right hemisphere patients. Neuropsychologia 51:2960–2975CrossRefPubMed Gandola M, Toraldo A, Invernizzi P, Corrado L, Sberna M, Santilli I, Bottini G, Paulesu E (2013) How many forms of perseveration? Evidence from cancellation tasks in right hemisphere patients. Neuropsychologia 51:2960–2975CrossRefPubMed
11.
Zurück zum Zitat Gmitrowicz A, Kucharska A (1994) Developmental disorders in the fourth edition of the American classification: diagnostic and statistical manual of mental disorders (DSM IV—optional book). Psychiatr Pol 28:509–521PubMed Gmitrowicz A, Kucharska A (1994) Developmental disorders in the fourth edition of the American classification: diagnostic and statistical manual of mental disorders (DSM IV—optional book). Psychiatr Pol 28:509–521PubMed
12.
Zurück zum Zitat Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689CrossRefPubMed Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689CrossRefPubMed
13.
Zurück zum Zitat Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194CrossRefPubMed Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194CrossRefPubMed
14.
Zurück zum Zitat Seo SW, Im K, Lee JM, Kim YH, Kim ST, Kim SY, Yang DW, Kim SI, Cho YS, Na DL (2007) Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36:289–297CrossRefPubMed Seo SW, Im K, Lee JM, Kim YH, Kim ST, Kim SY, Yang DW, Kim SI, Cho YS, Na DL (2007) Cortical thickness in single- versus multiple-domain amnestic mild cognitive impairment. Neuroimage 36:289–297CrossRefPubMed
15.
Zurück zum Zitat Ahn HJ, Chin J, Park A, Lee BH, Suh MK, Seo SW, Na DL (2010) Seoul Neuropsychological Screening Battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. J Korean Med Sci 25:1071–1076PubMedCentralCrossRefPubMed Ahn HJ, Chin J, Park A, Lee BH, Suh MK, Seo SW, Na DL (2010) Seoul Neuropsychological Screening Battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. J Korean Med Sci 25:1071–1076PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Kang Y, Na DL (2003) Seoul neuropsychological screening battery. Human Brain Research & Consulting Co, Incheon Kang Y, Na DL (2003) Seoul neuropsychological screening battery. Human Brain Research & Consulting Co, Incheon
17.
Zurück zum Zitat Kim SH, Seo SW, Go SM, Chin J, Lee BH, Lee JH, Han SH, Na DL (2011) Pyramidal and extrapyramidal scale (PEPS): a new scale for the assessment of motor impairment in vascular cognitive impairment associated with small vessel disease. Clin Neurol Neurosurg 113:181–187CrossRefPubMed Kim SH, Seo SW, Go SM, Chin J, Lee BH, Lee JH, Han SH, Na DL (2011) Pyramidal and extrapyramidal scale (PEPS): a new scale for the assessment of motor impairment in vascular cognitive impairment associated with small vessel disease. Clin Neurol Neurosurg 113:181–187CrossRefPubMed
18.
Zurück zum Zitat Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imagin 21:1280–1291CrossRef Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imagin 21:1280–1291CrossRef
19.
Zurück zum Zitat Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380CrossRefPubMed Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380CrossRefPubMed
20.
Zurück zum Zitat Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001CrossRefPubMed Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001CrossRefPubMed
21.
Zurück zum Zitat Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom. Neuroimage 31:572–584CrossRefPubMed Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom. Neuroimage 31:572–584CrossRefPubMed
22.
Zurück zum Zitat Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129:2885–2893CrossRefPubMed Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129:2885–2893CrossRefPubMed
23.
Zurück zum Zitat Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMed Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205CrossRefPubMed
24.
Zurück zum Zitat Zijdenbos A, Evans A, Riahi F, Sled J, Chui J, Kollokian V (1996) Automatic quantification of multiple sclerosis lesion volume using stereotaxic space. Vis Biomed Comput 1131:439–448CrossRef Zijdenbos A, Evans A, Riahi F, Sled J, Chui J, Kollokian V (1996) Automatic quantification of multiple sclerosis lesion volume using stereotaxic space. Vis Biomed Comput 1131:439–448CrossRef
25.
Zurück zum Zitat Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imagin 17:87–97CrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imagin 17:87–97CrossRef
26.
Zurück zum Zitat MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356CrossRefPubMed MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356CrossRefPubMed
27.
Zurück zum Zitat Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221CrossRefPubMed Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221CrossRefPubMed
28.
Zurück zum Zitat Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173CrossRefPubMed Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173CrossRefPubMed
29.
Zurück zum Zitat Robbins S, Evans AC, Collins DL, Whitesides S (2004) Tuning and comparing spatial normalization methods. Med Image Anal 8:311–323CrossRefPubMed Robbins S, Evans AC, Collins DL, Whitesides S (2004) Tuning and comparing spatial normalization methods. Med Image Anal 8:311–323CrossRefPubMed
30.
Zurück zum Zitat Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34:1535–1544CrossRefPubMed Lyttelton O, Boucher M, Robbins S, Evans A (2007) An unbiased iterative group registration template for cortical surface analysis. Neuroimage 34:1535–1544CrossRefPubMed
31.
Zurück zum Zitat Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRefPubMed Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRefPubMed
32.
Zurück zum Zitat Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMed Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMed
34.
Zurück zum Zitat Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878CrossRefPubMed Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878CrossRefPubMed
35.
Zurück zum Zitat Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98CrossRefPubMed Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98CrossRefPubMed
36.
Zurück zum Zitat Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347PubMedCentralCrossRefPubMed Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644PubMedCentralCrossRefPubMed Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed
39.
Zurück zum Zitat Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26:471–479CrossRefPubMed Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26:471–479CrossRefPubMed
40.
Zurück zum Zitat Lopez OL, Becker JT, Boller F (1991) Motor impersistence in Alzheimer’s disease. Cortex 27:93–99CrossRefPubMed Lopez OL, Becker JT, Boller F (1991) Motor impersistence in Alzheimer’s disease. Cortex 27:93–99CrossRefPubMed
41.
42.
43.
Zurück zum Zitat Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244CrossRefPubMed Rolls ET, Grabenhorst F (2008) The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 86:216–244CrossRefPubMed
44.
Zurück zum Zitat Gusnard DA, Ollinger JM, Shulman GL, Cloninger CR, Price JL, Van Essen DC, Raichle ME (2003) Persistence and brain circuitry. Proc Natl Acad Sci 100:3479–3484PubMedCentralCrossRefPubMed Gusnard DA, Ollinger JM, Shulman GL, Cloninger CR, Price JL, Van Essen DC, Raichle ME (2003) Persistence and brain circuitry. Proc Natl Acad Sci 100:3479–3484PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113:300–326CrossRefPubMed Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113:300–326CrossRefPubMed
46.
Zurück zum Zitat Jung YC, Ku J, Namkoong K, Lee W, Kim SI, Kim JJ (2010) Human orbitofrontal-striatum functional connectivity modulates behavioral persistence. NeuroReport 21:502–506CrossRefPubMed Jung YC, Ku J, Namkoong K, Lee W, Kim SI, Kim JJ (2010) Human orbitofrontal-striatum functional connectivity modulates behavioral persistence. NeuroReport 21:502–506CrossRefPubMed
47.
Zurück zum Zitat Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(Suppl 1):S89–S100CrossRefPubMed Rushworth MF, Johansen-Berg H, Gobel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20(Suppl 1):S89–S100CrossRefPubMed
48.
Zurück zum Zitat Rushworth MF, Krams M, Passingham RE (2001) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13:698–710CrossRefPubMed Rushworth MF, Krams M, Passingham RE (2001) The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain. J Cogn Neurosci 13:698–710CrossRefPubMed
49.
Zurück zum Zitat Rushworth MF, Nixon PD, Renowden S, Wade DT, Passingham RE (1997) The left parietal cortex and motor attention. Neuropsychologia 35:1261–1273CrossRefPubMed Rushworth MF, Nixon PD, Renowden S, Wade DT, Passingham RE (1997) The left parietal cortex and motor attention. Neuropsychologia 35:1261–1273CrossRefPubMed
50.
Zurück zum Zitat Pekkala S, Albert ML, Spiro A 3rd, Erkinjuntti T (2008) Perseveration in Alzheimer’s disease. Dement Geriatr Cogn Disord 25:109–114CrossRefPubMed Pekkala S, Albert ML, Spiro A 3rd, Erkinjuntti T (2008) Perseveration in Alzheimer’s disease. Dement Geriatr Cogn Disord 25:109–114CrossRefPubMed
51.
Zurück zum Zitat Possin KL, Filoteo JV, Roesch SC, Zizak V, Rilling LM, Davis JD (2005) Is a perseveration a perseveration? An evaluation of cognitive error types in patients with subcortical pathology. J Clin Exp Neuropsychol 27:953–966CrossRefPubMed Possin KL, Filoteo JV, Roesch SC, Zizak V, Rilling LM, Davis JD (2005) Is a perseveration a perseveration? An evaluation of cognitive error types in patients with subcortical pathology. J Clin Exp Neuropsychol 27:953–966CrossRefPubMed
52.
Zurück zum Zitat Paulesu E, Goldacre B, Scifo P, Cappa SF, Gilardi MC, Castiglioni I, Perani D, Fazio F (1997) Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8:2011–2017CrossRefPubMed Paulesu E, Goldacre B, Scifo P, Cappa SF, Gilardi MC, Castiglioni I, Perani D, Fazio F (1997) Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8:2011–2017CrossRefPubMed
53.
Zurück zum Zitat Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661CrossRefPubMed Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661CrossRefPubMed
54.
Zurück zum Zitat Luria AR (1965) Two kinds of motor perseveration in massive injury of the frontal lobes. Brain 88:1–10CrossRefPubMed Luria AR (1965) Two kinds of motor perseveration in massive injury of the frontal lobes. Brain 88:1–10CrossRefPubMed
55.
56.
57.
Zurück zum Zitat Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116CrossRefPubMed Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116CrossRefPubMed
58.
Zurück zum Zitat Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMed Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177CrossRefPubMed
59.
Zurück zum Zitat Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci 98:4259–4264PubMedCentralCrossRefPubMed Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci 98:4259–4264PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Cassaday HJ, Nelson AJ, Pezze MA (2014) From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations. Front Syst Neurosci 8:160PubMedCentralCrossRefPubMed Cassaday HJ, Nelson AJ, Pezze MA (2014) From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations. Front Syst Neurosci 8:160PubMedCentralCrossRefPubMed
61.
Zurück zum Zitat Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375CrossRefPubMed Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375CrossRefPubMed
62.
Zurück zum Zitat Smith E, Salat D, Jeng J, McCreary C, Fischl B, Schmahmann J, Dickerson B, Viswanathan A, Albert M, Blacker D (2011) Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 76:1492–1499PubMedCentralCrossRefPubMed Smith E, Salat D, Jeng J, McCreary C, Fischl B, Schmahmann J, Dickerson B, Viswanathan A, Albert M, Blacker D (2011) Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 76:1492–1499PubMedCentralCrossRefPubMed
63.
Zurück zum Zitat Román GC, Kalaria RN (2006) Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging 27:1769–1785CrossRefPubMed Román GC, Kalaria RN (2006) Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging 27:1769–1785CrossRefPubMed
64.
Zurück zum Zitat Jensen AR, Rohwer WD Jr (1966) The stroop color-word test: a review. Acta Psychol (Amst) 25:36–93CrossRef Jensen AR, Rohwer WD Jr (1966) The stroop color-word test: a review. Acta Psychol (Amst) 25:36–93CrossRef
65.
Zurück zum Zitat Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the stroop task. J Neurosci 28:13786–13792PubMedCentralCrossRefPubMed Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the stroop task. J Neurosci 28:13786–13792PubMedCentralCrossRefPubMed
66.
Zurück zum Zitat Wood AG, Saling MM, Abbott DF, Jackson GD (2001) A neurocognitive account of frontal lobe involvement in orthographic lexical retrieval: an fMRI study. Neuroimage 14:162–169CrossRefPubMed Wood AG, Saling MM, Abbott DF, Jackson GD (2001) A neurocognitive account of frontal lobe involvement in orthographic lexical retrieval: an fMRI study. Neuroimage 14:162–169CrossRefPubMed
67.
Zurück zum Zitat Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505CrossRefPubMed Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505CrossRefPubMed
Metadaten
Titel
The neural correlates of motor intentional disorders in patients with subcortical vascular cognitive impairment
verfasst von
Geon Ha Kim
Sang Won Seo
Kihyo Jung
Oh-Hun Kwon
Hunki Kwon
Jong Hun Kim
Jee Hoon Roh
Min-Jeong Kim
Byung Hwa Lee
Doo Sang Yoon
Jung Won Hwang
Jong Min Lee
Jee Hyang Jeong
Heecheon You
Kenneth M. Heilman
Duk L. Na
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 1/2016
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7946-6

Weitere Artikel der Ausgabe 1/2016

Journal of Neurology 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.