Skip to main content
Erschienen in: Der Onkologe 5/2015

01.05.2015 | Leitthema

Tumorvolumenbestimmung

Anforderungen der Strahlentherapie an die moderne radiologische Bildgebung

verfasst von: R. Bütof, Prof. Dr. M. Krause

Erschienen in: Die Onkologie | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Bei der kurativen Strahlentherapie handelt es sich um ein lokales Therapieverfahren, dessen Ziel die Vernichtung aller vitalen Tumorzellen bei gleichzeitig bestmöglicher Schonung des umliegenden Normalgewebes ist. Nur durch die Eradikation aller rezidivfähiger Tumorstammzellen, einer spezifischen Subpopulation innerhalb eines Tumors, kann eine dauerhafte lokale Tumorkontrolle erreicht werden.

Ergebnisse

Für eine präzise Zielvolumenbestimmung sind hochauflösende Bildgebungsmethoden von essenzieller Bedeutung. Nur durch die korrekte Einbeziehung aller Tumoranteile kann eine dauerhafte lokale Tumorkontrolle erzielt werden. Aktuelle Entwicklungen im Bereich des Bio-Imagings eröffnen neue Perspektiven innerhalb der Strahlentherapie durch die Verknüpfung anatomischer Informationen mit zusätzlichen biologischen Eigenschaften des Tumors.

Schlussfolgerung

Der Einsatz dieser modernen Bildgebungsverfahren zur genaueren Festlegung der Bestrahlungsvolumina bildet somit die Grundlage für die Anwendung moderner Bestrahlungstechniken in der Radioonkologie.
Literatur
1.
Zurück zum Zitat Abramyuk A, Appold S, Zophel K et al (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201CrossRefPubMed Abramyuk A, Appold S, Zophel K et al (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201CrossRefPubMed
2.
Zurück zum Zitat Baumann M, Dubois W, Suit HD (1990) Response of human squamous cell carcinoma xenografts of different sizes to irradiation: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiat Res 123:325–330CrossRefPubMed Baumann M, Dubois W, Suit HD (1990) Response of human squamous cell carcinoma xenografts of different sizes to irradiation: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiat Res 123:325–330CrossRefPubMed
3.
Zurück zum Zitat Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nature reviews. Cancer 8:545–554PubMed Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nature reviews. Cancer 8:545–554PubMed
4.
Zurück zum Zitat Baumann M, Krause M, Thames H et al (2009) Cancer stem cells and radiotherapy. Int J Radiat Biol 85:391–402CrossRefPubMed Baumann M, Krause M, Thames H et al (2009) Cancer stem cells and radiotherapy. Int J Radiat Biol 85:391–402CrossRefPubMed
5.
Zurück zum Zitat Brunner TB, Kunz-Schughart LA, Grosse-Gehling P et al (2012) Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 22:151–174CrossRefPubMed Brunner TB, Kunz-Schughart LA, Grosse-Gehling P et al (2012) Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 22:151–174CrossRefPubMed
6.
Zurück zum Zitat Bütof R, Dubrovska A, Baumann M (2013) Clinical perspectives of cancer stem cell research in radiation oncology. Radiother Oncol 108:388–396CrossRefPubMed Bütof R, Dubrovska A, Baumann M (2013) Clinical perspectives of cancer stem cell research in radiation oncology. Radiother Oncol 108:388–396CrossRefPubMed
7.
Zurück zum Zitat Castaldi P, Rufini V, Bussu F et al (2012) Can „early“ and „late“18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 103:63–68CrossRefPubMed Castaldi P, Rufini V, Bussu F et al (2012) Can „early“ and „late“18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 103:63–68CrossRefPubMed
8.
Zurück zum Zitat Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344CrossRefPubMed Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344CrossRefPubMed
9.
Zurück zum Zitat Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells. Stem Cells 24:2603–2610CrossRefPubMed Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells. Stem Cells 24:2603–2610CrossRefPubMed
10.
Zurück zum Zitat Hentschel M, Appold S, Schreiber A et al (2011) Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 38:1203–1211CrossRefPubMed Hentschel M, Appold S, Schreiber A et al (2011) Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 38:1203–1211CrossRefPubMed
11.
Zurück zum Zitat Horne ZD, Clump DA, Vargo JA et al (2014) Pretreatment SUVmax predicts progression-free survival in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiat Oncol 9:41CrossRefPubMedCentralPubMed Horne ZD, Clump DA, Vargo JA et al (2014) Pretreatment SUVmax predicts progression-free survival in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiat Oncol 9:41CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Kim G, Kim YS, Han EJ et al (2011) FDG-PET/CT as prognostic factor and surveillance tool for postoperative radiation recurrence in locally advanced head and neck cancer. Radiat Oncol J 29:243–251CrossRefPubMedCentralPubMed Kim G, Kim YS, Han EJ et al (2011) FDG-PET/CT as prognostic factor and surveillance tool for postoperative radiation recurrence in locally advanced head and neck cancer. Radiat Oncol J 29:243–251CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Koch U, Krause M, Baumann M (2010) Cancer stem cells at the crossroads of current cancer therapy failures – radiation oncology perspective. Semin Cancer Biol 20:116–124CrossRefPubMed Koch U, Krause M, Baumann M (2010) Cancer stem cells at the crossroads of current cancer therapy failures – radiation oncology perspective. Semin Cancer Biol 20:116–124CrossRefPubMed
14.
Zurück zum Zitat Krause M, Yaromina A, Eicheler W et al (2011) Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res 17:7224–7229CrossRefPubMed Krause M, Yaromina A, Eicheler W et al (2011) Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res 17:7224–7229CrossRefPubMed
15.
Zurück zum Zitat Lee IH, Piert M, Gomez-Hassan D et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:479–485CrossRefPubMedCentralPubMed Lee IH, Piert M, Gomez-Hassan D et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:479–485CrossRefPubMedCentralPubMed
16.
Zurück zum Zitat Mak D, Corry J, Lau E et al (2011) Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 55:487–499PubMed Mak D, Corry J, Lau E et al (2011) Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 55:487–499PubMed
17.
Zurück zum Zitat Matsuo M, Miwa K, Tanaka O et al (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82:83–89CrossRefPubMed Matsuo M, Miwa K, Tanaka O et al (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82:83–89CrossRefPubMed
18.
Zurück zum Zitat Munro TR, Gilbert CW (1961) The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol 34:246–251CrossRefPubMed Munro TR, Gilbert CW (1961) The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol 34:246–251CrossRefPubMed
19.
Zurück zum Zitat Nawara C, Rendl G, Wurstbauer K et al (2012) The impact of PET and PET/CT on treatment planning and prognosis of patients with NSCLC treated with radiation therapy. Q J Nucl Med Mol Imaging 56:191–201PubMed Nawara C, Rendl G, Wurstbauer K et al (2012) The impact of PET and PET/CT on treatment planning and prognosis of patients with NSCLC treated with radiation therapy. Q J Nucl Med Mol Imaging 56:191–201PubMed
20.
Zurück zum Zitat Petersen C, Baumann M, Dubben HH et al (1998) Linear-quadratic analysis of tumour response to fractionated radiotherapy: a study on human squamous cell carcinoma xenografts. Int J Radiat Biol 73:197–205CrossRefPubMed Petersen C, Baumann M, Dubben HH et al (1998) Linear-quadratic analysis of tumour response to fractionated radiotherapy: a study on human squamous cell carcinoma xenografts. Int J Radiat Biol 73:197–205CrossRefPubMed
21.
22.
Zurück zum Zitat Soliman M, Yaromina A, Appold S et al (2013) GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: subgroup analysis of the prospective randomized CHARTWEL trial. Radiother Oncol 106:299–304CrossRefPubMed Soliman M, Yaromina A, Appold S et al (2013) GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: subgroup analysis of the prospective randomized CHARTWEL trial. Radiother Oncol 106:299–304CrossRefPubMed
23.
Zurück zum Zitat Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310CrossRefPubMed Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310CrossRefPubMed
24.
Zurück zum Zitat Yaromina A, Thames H, Zhou X et al (2010) Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 96:116–122CrossRefPubMed Yaromina A, Thames H, Zhou X et al (2010) Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 96:116–122CrossRefPubMed
25.
Zurück zum Zitat Zips D, Zophel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105:21–28CrossRefPubMed Zips D, Zophel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105:21–28CrossRefPubMed
Metadaten
Titel
Tumorvolumenbestimmung
Anforderungen der Strahlentherapie an die moderne radiologische Bildgebung
verfasst von
R. Bütof
Prof. Dr. M. Krause
Publikationsdatum
01.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Die Onkologie / Ausgabe 5/2015
Print ISSN: 2731-7226
Elektronische ISSN: 2731-7234
DOI
https://doi.org/10.1007/s00761-014-2813-0

Weitere Artikel der Ausgabe 5/2015

Der Onkologe 5/2015 Zur Ausgabe

Einführung zum Thema

Monitoring von Tumortherapie

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.