Skip to main content
Erschienen in: Inflammation Research 6/2019

29.03.2019 | Original Research Paper

α-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLP-induced sepsis in mice

verfasst von: Yun Ge, Xin Xu, Qiqiang Liang, Yongshan Xu, Man Huang

Erschienen in: Inflammation Research | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

The major mechanism of sepsis is immunosuppression caused by host response dysfunction. It has been found that α-Mangostin (α-M) is a potential candidate as a treatment for multiple inflammatory and immune disorders. To date, the role of α-M in host response during sepsis remains unexplored.

Methods and results

Herein, we examined the effect of α-M on macrophages-mediated host response in the presence of lipopolysaccharide (LPS), and the vital organ function, inflammatory response, and survival rate in septic mice. In murine peritoneal macrophages, α-M induced autophagy and then inhibited LPS-stimulated NLRP3 inflammasome activation, as well as interleukin-1β (IL-1β) production. Moreover, α-M improved phagocytosis and killing of macrophages, and increased M2 macrophages numbers after LPS stimulation. Furthermore, in vivo experiment suggested that α-M reduced serum levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-1β, alanine transaminase (ALT), aspartate transaminase (AST), and creatinine (Cr), whilst increased that of interleukin-10 (IL-10) in caecal ligation and puncture (CLP) mice.

Conclusion

Taken together, these findings showed that α-M-mediated macrophages autophagy contributed to NLRP3 inflammasome inactivation and α-M exerted organ protection in septic mice.
Literatur
1.
Zurück zum Zitat Shankar-Hari M, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis ans septic shock (sepsis-3). JAMA. 2016;315:775–87.CrossRefPubMedPubMedCentral Shankar-Hari M, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis ans septic shock (sepsis-3). JAMA. 2016;315:775–87.CrossRefPubMedPubMedCentral
4.
5.
Zurück zum Zitat Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.CrossRefPubMedPubMedCentral Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.CrossRefPubMedPubMedCentral
7.
8.
Zurück zum Zitat Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-induced T cell immunoparalysis: the ins and outs of impaired T cell immunity. J Immunol. 2018;200:1543–53.PubMed Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP. Sepsis-induced T cell immunoparalysis: the ins and outs of impaired T cell immunity. J Immunol. 2018;200:1543–53.PubMed
9.
Zurück zum Zitat Savelkoel J, Claushuis TAM, vanEngelen TSR, Scheres LJJ, Wiersinga WJ. Global impact of World Sepsis Day on digital awareness of sepsis: an evaluation using Google Trends. Crit Care. 2018;22:61.CrossRefPubMedPubMedCentral Savelkoel J, Claushuis TAM, vanEngelen TSR, Scheres LJJ, Wiersinga WJ. Global impact of World Sepsis Day on digital awareness of sepsis: an evaluation using Google Trends. Crit Care. 2018;22:61.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Anthony JL, Timothy RB, Matthew RR. Biology and metabolism of sepsis: innate immunity, bioenergetics, and autophagy. Surg Infect. 2016;17:286–93.CrossRef Anthony JL, Timothy RB, Matthew RR. Biology and metabolism of sepsis: innate immunity, bioenergetics, and autophagy. Surg Infect. 2016;17:286–93.CrossRef
11.
Zurück zum Zitat Zhang L, Ai YH, Tsung A. Clinical application: restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (review). Exp Ther Med. 2016;12:1159–67.CrossRef Zhang L, Ai YH, Tsung A. Clinical application: restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (review). Exp Ther Med. 2016;12:1159–67.CrossRef
12.
Zurück zum Zitat Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J pathol. 2012;226:255–73.CrossRefPubMed Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J pathol. 2012;226:255–73.CrossRefPubMed
13.
Zurück zum Zitat Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.CrossRefPubMed Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:651–62.CrossRefPubMed
14.
Zurück zum Zitat Chen YQ, Klionsky DJ. The regulation of autophagy–unanswered questions. J Cell Sci. 2011;124:161–70.CrossRefPubMed Chen YQ, Klionsky DJ. The regulation of autophagy–unanswered questions. J Cell Sci. 2011;124:161–70.CrossRefPubMed
15.
Zurück zum Zitat Watanabe E, et al. Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab Invest. 2009;9:549–61.CrossRef Watanabe E, et al. Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab Invest. 2009;9:549–61.CrossRef
17.
Zurück zum Zitat Chen G, Li Y, Wang W, Deng L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: a review. Expert Opin Ther Pat. 2018;3:1–13. Chen G, Li Y, Wang W, Deng L. Bioactivity and pharmacological properties of α-mangostin from the mangosteen fruit: a review. Expert Opin Ther Pat. 2018;3:1–13.
18.
Zurück zum Zitat Scolamiero G, Pazzini C, Bonafè F, Guarnieri C, Muscari C. Effects of α-mangostin on viability, growth and cohesion of multicellular spheroids derived from human breast cancer cell lines. Int J Med Sci. 2018;15:23–30.CrossRefPubMedPubMedCentral Scolamiero G, Pazzini C, Bonafè F, Guarnieri C, Muscari C. Effects of α-mangostin on viability, growth and cohesion of multicellular spheroids derived from human breast cancer cell lines. Int J Med Sci. 2018;15:23–30.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Liu T, et al. Alpha-mangostin attenuates diabetic nephropathy in association with suppression of acid sphingomyelianse and endoplasmic reticulum stress. Biochem Biophys Res Commun. 2018;496:394–400.CrossRefPubMed Liu T, et al. Alpha-mangostin attenuates diabetic nephropathy in association with suppression of acid sphingomyelianse and endoplasmic reticulum stress. Biochem Biophys Res Commun. 2018;496:394–400.CrossRefPubMed
20.
Zurück zum Zitat Pan T, et al. Alpha-Mangostin suppresses interleukin-1β-induced apoptosis in rat chondrocytes by inhibiting the NF-κB signaling pathway and delays the progression of osteoarthritis in a rat model. Int Immunopharmacol. 2017;52:156–62.CrossRefPubMed Pan T, et al. Alpha-Mangostin suppresses interleukin-1β-induced apoptosis in rat chondrocytes by inhibiting the NF-κB signaling pathway and delays the progression of osteoarthritis in a rat model. Int Immunopharmacol. 2017;52:156–62.CrossRefPubMed
21.
Zurück zum Zitat Pimchan T, Maensiri D, Eumkeb G. Synergy and mechanism of action of α-mangostin and ceftazidime against ceftazidime-resistant Acinetobacter baumannii. Lett Appl Microbiol. 2017;65:285–91.CrossRefPubMed Pimchan T, Maensiri D, Eumkeb G. Synergy and mechanism of action of α-mangostin and ceftazidime against ceftazidime-resistant Acinetobacter baumannii. Lett Appl Microbiol. 2017;65:285–91.CrossRefPubMed
22.
Zurück zum Zitat You BH, et al. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol. 2017;49:212–21.CrossRefPubMed You BH, et al. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol. 2017;49:212–21.CrossRefPubMed
23.
Zurück zum Zitat Franceschelli S, et al. A novel biological role of α-mangostin in modulating inflammatory response through the activation of SIRT-1 signaling pathway. J Cell Physiol. 2016;231:2439–51.CrossRefPubMed Franceschelli S, et al. A novel biological role of α-mangostin in modulating inflammatory response through the activation of SIRT-1 signaling pathway. J Cell Physiol. 2016;231:2439–51.CrossRefPubMed
24.
Zurück zum Zitat Sivaranjani M, et al. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol. 2017;101:3349–59.CrossRefPubMed Sivaranjani M, et al. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol. 2017;101:3349–59.CrossRefPubMed
25.
Zurück zum Zitat Chen ZL, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine. 2016;12:421–30.CrossRefPubMed Chen ZL, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine. 2016;12:421–30.CrossRefPubMed
26.
Zurück zum Zitat Catorce MN, et al. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol. 2016;297:20–7.CrossRef Catorce MN, et al. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol. 2016;297:20–7.CrossRef
27.
Zurück zum Zitat Patil NK, Bohannon JK, Sherwood ER. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacol Res. 2016;111:688–702.CrossRefPubMedPubMedCentral Patil NK, Bohannon JK, Sherwood ER. Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression. Pharmacol Res. 2016;111:688–702.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yadav H, Cartin-Ceba R. Balance between hyperinflammation and immunosuppression in sepsis. Semin Respir Crit Care Med. 2016;37:42.CrossRefPubMed Yadav H, Cartin-Ceba R. Balance between hyperinflammation and immunosuppression in sepsis. Semin Respir Crit Care Med. 2016;37:42.CrossRefPubMed
29.
30.
Zurück zum Zitat Venet F, Rimmelé T, Monneret G. Management of sepsis-induced immunosuppression. Crit Care Clin. 2018;34:97.CrossRefPubMed Venet F, Rimmelé T, Monneret G. Management of sepsis-induced immunosuppression. Crit Care Clin. 2018;34:97.CrossRefPubMed
31.
Zurück zum Zitat Cavaillon JM, Adib-Conquy M. Monocytes/macrophages and sepsis. Crit Care Med. 2005;33(Suppl):S506–9.CrossRefPubMed Cavaillon JM, Adib-Conquy M. Monocytes/macrophages and sepsis. Crit Care Med. 2005;33(Suppl):S506–9.CrossRefPubMed
32.
Zurück zum Zitat Rabani R, et al. Mesenchymal stem cells enhance NOX2 dependent ROS production and bacterial killing in macrophages during sepsis. Eur Respir J. 2018;8:1702021.CrossRef Rabani R, et al. Mesenchymal stem cells enhance NOX2 dependent ROS production and bacterial killing in macrophages during sepsis. Eur Respir J. 2018;8:1702021.CrossRef
33.
Zurück zum Zitat Liu Y, et al. Scutellarin Suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front Pharmacol. 2018;8:975.CrossRefPubMedPubMedCentral Liu Y, et al. Scutellarin Suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front Pharmacol. 2018;8:975.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Xing L, et al. Role of M2 Macrophages in Sepsis-Induced Acute Kidney Injury. Shock. 2017;1:233–9. Xing L, et al. Role of M2 Macrophages in Sepsis-Induced Acute Kidney Injury. Shock. 2017;1:233–9.
35.
Zurück zum Zitat Linch SN, Danielson ET, Kelly AM, Lee JJ, Gold JA. The effect of IL-5 on macrophages and PMNs in sepsis. Am J Resp Crit Care. 2009;179:A1024. Linch SN, Danielson ET, Kelly AM, Lee JJ, Gold JA. The effect of IL-5 on macrophages and PMNs in sepsis. Am J Resp Crit Care. 2009;179:A1024.
36.
37.
Zurück zum Zitat Wang Y, et al. Alpha- mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates beta-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology. 2012;62:871–81.CrossRefPubMed Wang Y, et al. Alpha- mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates beta-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology. 2012;62:871–81.CrossRefPubMed
38.
Zurück zum Zitat Jin L, Batra S, Jeyaseelan S. Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J Immunol. 2017;198:1253–62.CrossRefPubMed Jin L, Batra S, Jeyaseelan S. Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J Immunol. 2017;198:1253–62.CrossRefPubMed
39.
Zurück zum Zitat Long H, Xu B, Luo Y, Luo K. Artemisinin protects mice against burn sepsis through inhibiting NLRP3 inflammasome activation. Am J Emerg Med. 2016;34:772–7.CrossRefPubMed Long H, Xu B, Luo Y, Luo K. Artemisinin protects mice against burn sepsis through inhibiting NLRP3 inflammasome activation. Am J Emerg Med. 2016;34:772–7.CrossRefPubMed
40.
Zurück zum Zitat Wu D, et al. Intermedin1-53 protects cardiac fibroblasts by inhibiting NLRP3 inflammasome activation during sepsis. Inflammation. 2018;41:505–14.CrossRefPubMed Wu D, et al. Intermedin1-53 protects cardiac fibroblasts by inhibiting NLRP3 inflammasome activation during sepsis. Inflammation. 2018;41:505–14.CrossRefPubMed
41.
Metadaten
Titel
α-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLP-induced sepsis in mice
verfasst von
Yun Ge
Xin Xu
Qiqiang Liang
Yongshan Xu
Man Huang
Publikationsdatum
29.03.2019
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 6/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01232-0

Weitere Artikel der Ausgabe 6/2019

Inflammation Research 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.