Skip to main content
Erschienen in: Inflammation 4/2018

01.05.2018 | ORIGINAL ARTICLE

β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation

verfasst von: Xiaojuan Liu, Aihong Li, Yuanyuan Ju, Wangrui Liu, Hui Shi, Renyue Hu, Zijian Zhou, Xiaolei Sun

Erschienen in: Inflammation | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

The inflammatory activation of microglia has double-edged effects in central nervous system (CNS) diseases. The ligand-activated transcriptional factor peroxisome proliferator-activated receptor γ (PPARγ) inhibits the inflammatory response. β-1,4-Galactosyltransferase Ι (β1, 4GalT1) mediates N-glycosylation. In this study, the N-glycosylation of PPARγ, as well as two N-linked glycosylation sites in its DNA binding domain (DBD), was identified. Disruption of both sites by site-directed mutagenesis completely abrogated the N-glycosylation of PPARγ. PPAR wild-type (WT) transfection inhibited the inflammatory activation of microglia, while the anti-inflammatory function of unglycosylated PPARγ was down-regulated. In addition, β1, 4GalT1 was shown to interact with PPARγ and to mediate PPARγ glycosylation. β1, 4GalT1 promoted PPARγ’s anti-transcription and anti-inflammatory functions. Collectively, our findings define that β-1, 4GalT1 mediated PPARγ glycosylation to attenuate the inflammatory activation of microglia, which has implications for potential therapies for CNS inflammatory diseases.
Literatur
2.
Zurück zum Zitat Wang Y, Ruan W, Mi J, Xu J, Wang H, Cao Z, et al. Balasubramide derivative 3C modulates microglia activation via CaMKKbeta-dependent AMPK/PGC-1alpha pathway in neuroinflammatory conditions. Brain, Behavior, and Immunity 2017. Wang Y, Ruan W, Mi J, Xu J, Wang H, Cao Z, et al. Balasubramide derivative 3C modulates microglia activation via CaMKKbeta-dependent AMPK/PGC-1alpha pathway in neuroinflammatory conditions. Brain, Behavior, and Immunity 2017.
3.
Zurück zum Zitat Lim H, Lee H, Noh K, Lee SJ. IKK/NF-kappa B-Dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017; 158:1666–1677. Lim H, Lee H, Noh K, Lee SJ. IKK/NF-kappa B-Dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 2017; 158:1666–1677.
4.
Zurück zum Zitat Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica et Biophysica Acta 2016; 1862:339–351. Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica et Biophysica Acta 2016; 1862:339–351.
5.
Zurück zum Zitat Arafah, K., D. Croix, J. Vizioli, A. Desmons, I. Fournier, and M. Salzet. 2013. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 61: 636–649.CrossRefPubMed Arafah, K., D. Croix, J. Vizioli, A. Desmons, I. Fournier, and M. Salzet. 2013. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 61: 636–649.CrossRefPubMed
6.
Zurück zum Zitat Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 2017. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cellular and Molecular Neurobiology 2017.
7.
Zurück zum Zitat Narala, V.R., P.A. Subramani, V.R. Narasimha, F.B. Shaik, and K. Panati. 2014. The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation. International Immunopharmacology 23: 283–287.CrossRefPubMed Narala, V.R., P.A. Subramani, V.R. Narasimha, F.B. Shaik, and K. Panati. 2014. The role of nitrated fatty acids and peroxisome proliferator-activated receptor gamma in modulating inflammation. International Immunopharmacology 23: 283–287.CrossRefPubMed
8.
Zurück zum Zitat Martin, H. 2010. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research 690: 57–63.CrossRefPubMed Martin, H. 2010. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research 690: 57–63.CrossRefPubMed
10.
Zurück zum Zitat Han T, Liu M, Yang S. DJ-1 alleviates angiotensin II-induced endothelial progenitor cell damage by activating the PPARgamma/HO-1 pathway. Journal of Cellular Biochemistry 2017. Han T, Liu M, Yang S. DJ-1 alleviates angiotensin II-induced endothelial progenitor cell damage by activating the PPARgamma/HO-1 pathway. Journal of Cellular Biochemistry 2017.
11.
Zurück zum Zitat Cai, W., T. Yang, H. Liu, L. Han, K. Zhang, X. Hu, X. Zhang, K.J. Yin, Y. Gao, M.V.L. Bennett, R.K. Leak, and J. Chen. 2017. Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. Progress in Neurobiology. Cai, W., T. Yang, H. Liu, L. Han, K. Zhang, X. Hu, X. Zhang, K.J. Yin, Y. Gao, M.V.L. Bennett, R.K. Leak, and J. Chen. 2017. Peroxisome proliferator-activated receptor gamma (PPARgamma): A master gatekeeper in CNS injury and repair. Progress in Neurobiology.
12.
Zurück zum Zitat Pu, Y., and A. Veiga-Lopez. 2017. PPARgamma agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cellular & Molecular Biology Letters 22: 6.CrossRef Pu, Y., and A. Veiga-Lopez. 2017. PPARgamma agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes. Cellular & Molecular Biology Letters 22: 6.CrossRef
13.
Zurück zum Zitat Kim, J.C. 2016. The effect of exercise training combined with PPARgamma agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats. J Exerc Nutrition Biochem 20: 42–50.CrossRefPubMedPubMedCentral Kim, J.C. 2016. The effect of exercise training combined with PPARgamma agonist on skeletal muscle glucose uptake and insulin sensitivity in induced diabetic obese Zucker rats. J Exerc Nutrition Biochem 20: 42–50.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Tol, M.J., R. Ottenhoff, M. van Eijk, N. Zelcer, J. Aten, S.M. Houten, D. Geerts, C. van Roomen, M.C. Bierlaagh, S. Scheij, M.A. Hoeksema, J.M. Aerts, J.S. Bogan, G.W. Dorn 2nd, C.A. Argmann, and A.J. Verhoeven. 2016. A PPARgamma-Bnip3 Axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity. Diabetes 65: 2591–2605.CrossRefPubMedPubMedCentral Tol, M.J., R. Ottenhoff, M. van Eijk, N. Zelcer, J. Aten, S.M. Houten, D. Geerts, C. van Roomen, M.C. Bierlaagh, S. Scheij, M.A. Hoeksema, J.M. Aerts, J.S. Bogan, G.W. Dorn 2nd, C.A. Argmann, and A.J. Verhoeven. 2016. A PPARgamma-Bnip3 Axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity. Diabetes 65: 2591–2605.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Pawlak, M., P. Lefebvre, and B. Staels. 2015. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology 62: 720–733.CrossRefPubMed Pawlak, M., P. Lefebvre, and B. Staels. 2015. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology 62: 720–733.CrossRefPubMed
16.
Zurück zum Zitat Merlin, J., M. Sato, C. Nowell, M. Pakzad, R. Fahey, J. Gao, et al. 2017. The PPARgamma agonist rosiglitazone promotes the induction of brite adipocytes, increasing beta-adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling 42: 54–66.CrossRefPubMed Merlin, J., M. Sato, C. Nowell, M. Pakzad, R. Fahey, J. Gao, et al. 2017. The PPARgamma agonist rosiglitazone promotes the induction of brite adipocytes, increasing beta-adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling 42: 54–66.CrossRefPubMed
17.
Zurück zum Zitat Niu, Z., Q. Shi, W. Zhang, Y. Shu, N. Yang, B. Chen, Q. Wang, X. Zhao, J. Chen, N. Cheng, X. Feng, Z. Hua, J. Ji, and P. Shen. 2017. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nature Communications 8: 766.CrossRefPubMedPubMedCentral Niu, Z., Q. Shi, W. Zhang, Y. Shu, N. Yang, B. Chen, Q. Wang, X. Zhao, J. Chen, N. Cheng, X. Feng, Z. Hua, J. Ji, and P. Shen. 2017. Caspase-1 cleaves PPARgamma for potentiating the pro-tumor action of TAMs. Nature Communications 8: 766.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Ricote, M., J. Huang, L. Fajas, A. Li, J. Welch, J. Najib, J.L. Witztum, J. Auwerx, W. Palinski, and C.K. Glass. 1998. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America 95: 7614–7619.CrossRefPubMedPubMedCentral Ricote, M., J. Huang, L. Fajas, A. Li, J. Welch, J. Najib, J.L. Witztum, J. Auwerx, W. Palinski, and C.K. Glass. 1998. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America 95: 7614–7619.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hsu, W.J., N.C. Wildburger, S.J. Haidacher, M.N. Nenov, O. Folorunso, A.K. Singh, et al. 2017. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Experimental Neurology 295: 1–17.CrossRefPubMedPubMedCentral Hsu, W.J., N.C. Wildburger, S.J. Haidacher, M.N. Nenov, O. Folorunso, A.K. Singh, et al. 2017. PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Experimental Neurology 295: 1–17.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hennet, T. 2002. The galactosyltransferase family. Cellular and Molecular Life Sciences 59: 1081–1095.CrossRefPubMed Hennet, T. 2002. The galactosyltransferase family. Cellular and Molecular Life Sciences 59: 1081–1095.CrossRefPubMed
21.
Zurück zum Zitat Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, N. Hashimoto, H. Kawashima, M. Hirose, M. Miyasaka, S. Takasaki, and Y. Iwakura. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood 102: 1678–1685.CrossRefPubMed Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, N. Hashimoto, H. Kawashima, M. Hirose, M. Miyasaka, S. Takasaki, and Y. Iwakura. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood 102: 1678–1685.CrossRefPubMed
22.
Zurück zum Zitat Guo, S., T. Sato, K. Shirane, and K. Furukawa. 2001. Galactosylation of N-linked oligosaccharides by human beta-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 11: 813–820.CrossRefPubMed Guo, S., T. Sato, K. Shirane, and K. Furukawa. 2001. Galactosylation of N-linked oligosaccharides by human beta-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 11: 813–820.CrossRefPubMed
23.
Zurück zum Zitat Ujita, M., A.K. Misra, J. McAuliffe, O. Hindsgaul, and M. Fukuda. 2000. Poly-N-acetyllactosamine extension in N-glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase gene family. The Journal of Biological Chemistry 275: 15868–15875.CrossRefPubMed Ujita, M., A.K. Misra, J. McAuliffe, O. Hindsgaul, and M. Fukuda. 2000. Poly-N-acetyllactosamine extension in N-glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase gene family. The Journal of Biological Chemistry 275: 15868–15875.CrossRefPubMed
24.
Zurück zum Zitat Quentin, E., A. Gladen, L. Roden, and H. Kresse. 1990. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: Galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proceedings of the National Academy of Sciences of the United States of America 87: 1342–1346.CrossRefPubMedPubMedCentral Quentin, E., A. Gladen, L. Roden, and H. Kresse. 1990. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: Galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proceedings of the National Academy of Sciences of the United States of America 87: 1342–1346.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Nishie, T., Y. Hikimochi, K. Zama, Y. Fukusumi, M. Ito, H. Yokoyama, C. Naruse, M. Ito, and M. Asano. 2010. Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20: 1311–1322.CrossRefPubMed Nishie, T., Y. Hikimochi, K. Zama, Y. Fukusumi, M. Ito, H. Yokoyama, C. Naruse, M. Ito, and M. Asano. 2010. Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20: 1311–1322.CrossRefPubMed
26.
Zurück zum Zitat Tokuda, N., S. Numata, X. Li, T. Nomura, and M. Takizawa. 2013. Kondo Y, et al. beta4GalT6 is involved in the synthesis of lactosylceramide with less intensity than beta4GalT5. Glycobiology 23: 1175–1183.CrossRefPubMed Tokuda, N., S. Numata, X. Li, T. Nomura, and M. Takizawa. 2013. Kondo Y, et al. beta4GalT6 is involved in the synthesis of lactosylceramide with less intensity than beta4GalT5. Glycobiology 23: 1175–1183.CrossRefPubMed
27.
Zurück zum Zitat Zhang, Z.N., L. Gong, S. Lv, J. Li, X. Tai, W. Cao, B. Peng, S. Qu, W. Li, C. Zhang, and B. Luan. 2016. SIK2 regulates fasting-induced PPARalpha activity and ketogenesis through p300. Scientific Reports 6: 23317.CrossRefPubMedPubMedCentral Zhang, Z.N., L. Gong, S. Lv, J. Li, X. Tai, W. Cao, B. Peng, S. Qu, W. Li, C. Zhang, and B. Luan. 2016. SIK2 regulates fasting-induced PPARalpha activity and ketogenesis through p300. Scientific Reports 6: 23317.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Giulian, D., and T.J. Baker. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. The Journal of Neuroscience 6: 2163–2178.CrossRefPubMedPubMedCentral Giulian, D., and T.J. Baker. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. The Journal of Neuroscience 6: 2163–2178.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ruan, J., Z. Qi, L. Shen, Y. Jiang, Y. Xu, L. Lan, L. Luo, and Z. Yin. 2015. Crosstalk between JNK and NF-kappaB signaling pathways via HSP27 phosphorylation in HepG2 cells. Biochemical and Biophysical Research Communications 456: 122–128.CrossRefPubMed Ruan, J., Z. Qi, L. Shen, Y. Jiang, Y. Xu, L. Lan, L. Luo, and Z. Yin. 2015. Crosstalk between JNK and NF-kappaB signaling pathways via HSP27 phosphorylation in HepG2 cells. Biochemical and Biophysical Research Communications 456: 122–128.CrossRefPubMed
30.
31.
Zurück zum Zitat Ahmadian, M., J.M. Suh, N. Hah, C. Liddle, A.R. Atkins, M. Downes, and R.M. Evans. 2013. PPARgamma signaling and metabolism: The good, the bad and the future. Nature Medicine 19: 557–566.CrossRefPubMed Ahmadian, M., J.M. Suh, N. Hah, C. Liddle, A.R. Atkins, M. Downes, and R.M. Evans. 2013. PPARgamma signaling and metabolism: The good, the bad and the future. Nature Medicine 19: 557–566.CrossRefPubMed
32.
Zurück zum Zitat Bojarova, P., R.R. Rosencrantz, L. Elling, and V. Kren. 2013. Enzymatic glycosylation of multivalent scaffolds. Chemical Society Reviews 42: 4774–4797.CrossRefPubMed Bojarova, P., R.R. Rosencrantz, L. Elling, and V. Kren. 2013. Enzymatic glycosylation of multivalent scaffolds. Chemical Society Reviews 42: 4774–4797.CrossRefPubMed
33.
Zurück zum Zitat Dall'Olio, F., V. Vanhooren, C.C. Chen, P.E. Slagboom, M. Wuhrer, and C. Franceschi. 2013. N-glycomic biomarkers of biological aging and longevity: A link with inflammaging. Ageing Research Reviews 12: 685–698.CrossRefPubMed Dall'Olio, F., V. Vanhooren, C.C. Chen, P.E. Slagboom, M. Wuhrer, and C. Franceschi. 2013. N-glycomic biomarkers of biological aging and longevity: A link with inflammaging. Ageing Research Reviews 12: 685–698.CrossRefPubMed
34.
Zurück zum Zitat Javed, H., S. Azimullah, S.B. Abul Khair, S. Ojha, and M.E. Haque. 2016. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neuroscience 17: 58.CrossRefPubMedPubMedCentral Javed, H., S. Azimullah, S.B. Abul Khair, S. Ojha, and M.E. Haque. 2016. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neuroscience 17: 58.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Cao, Q., A. Karthikeyan, S.T. Dheen, C. Kaur, and E.A. Ling. 2017. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3beta) and NF-kappaB/p65 signalling. PLoS One 12: e0186764.CrossRefPubMedPubMedCentral Cao, Q., A. Karthikeyan, S.T. Dheen, C. Kaur, and E.A. Ling. 2017. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3beta) and NF-kappaB/p65 signalling. PLoS One 12: e0186764.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Crosby, M.B., J. Svenson, G.S. Gilkeson, and T.K. Nowling. 2005. A novel PPAR response element in the murine iNOS promoter. Molecular Immunology 42: 1303–1310.CrossRefPubMed Crosby, M.B., J. Svenson, G.S. Gilkeson, and T.K. Nowling. 2005. A novel PPAR response element in the murine iNOS promoter. Molecular Immunology 42: 1303–1310.CrossRefPubMed
37.
Zurück zum Zitat Fujimoto, Y., T. Shiraki, Y. Horiuchi, T. Waku, A. Shigenaga, A. Otaka, T. Ikura, K. Igarashi, S. Aimoto, S.I. Tate, and K. Morikawa. 2010. Proline cis/trans-isomerase Pin1 regulates peroxisome proliferator-activated receptor gamma activity through the direct binding to the activation function-1 domain. The Journal of Biological Chemistry 285: 3126–3132.CrossRefPubMed Fujimoto, Y., T. Shiraki, Y. Horiuchi, T. Waku, A. Shigenaga, A. Otaka, T. Ikura, K. Igarashi, S. Aimoto, S.I. Tate, and K. Morikawa. 2010. Proline cis/trans-isomerase Pin1 regulates peroxisome proliferator-activated receptor gamma activity through the direct binding to the activation function-1 domain. The Journal of Biological Chemistry 285: 3126–3132.CrossRefPubMed
38.
Zurück zum Zitat Diezko, R., and G. Suske. 2013. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor gamma (PPARgamma) activation function 1 (AF1) domain. PLoS One 8: e66947.CrossRefPubMedPubMedCentral Diezko, R., and G. Suske. 2013. Ligand binding reduces SUMOylation of the peroxisome proliferator-activated receptor gamma (PPARgamma) activation function 1 (AF1) domain. PLoS One 8: e66947.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Kliewer, S.A., K. Umesono, D.J. Noonan, R.A. Heyman, and R.M. Evans. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774.CrossRefPubMedPubMedCentral Kliewer, S.A., K. Umesono, D.J. Noonan, R.A. Heyman, and R.M. Evans. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Juge-Aubry, C., A. Pernin, T. Favez, A.G. Burger, W. Wahli, C.A. Meier, and B. Desvergne. 1997. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. The Journal of Biological Chemistry 272: 25252–25259.CrossRefPubMed Juge-Aubry, C., A. Pernin, T. Favez, A.G. Burger, W. Wahli, C.A. Meier, and B. Desvergne. 1997. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. The Journal of Biological Chemistry 272: 25252–25259.CrossRefPubMed
41.
Zurück zum Zitat Zhang, L., M. Zhu, M. Li, Y. Du, S. Duan, Y. Huang, et al. 2017. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-gamma/NF-kappaB signal pathway. Oncotarget 8: 55384–55393.PubMedPubMedCentral Zhang, L., M. Zhu, M. Li, Y. Du, S. Duan, Y. Huang, et al. 2017. Ginsenoside Rg1 attenuates adjuvant-induced arthritis in rats via modulation of PPAR-gamma/NF-kappaB signal pathway. Oncotarget 8: 55384–55393.PubMedPubMedCentral
42.
Zurück zum Zitat Kim, J.S., Y.H. Lee, Y.U. Chang, and H.K. Yi. 2017. PPARgamma regulates inflammatory reaction by inhibiting the MAPK/NF-kappaB pathway in C2C12 skeletal muscle cells. Journal of Physiology and Biochemistry 73: 49–57.CrossRefPubMed Kim, J.S., Y.H. Lee, Y.U. Chang, and H.K. Yi. 2017. PPARgamma regulates inflammatory reaction by inhibiting the MAPK/NF-kappaB pathway in C2C12 skeletal muscle cells. Journal of Physiology and Biochemistry 73: 49–57.CrossRefPubMed
43.
Zurück zum Zitat Huang, D., Q. Zhao, H. Liu, Y. Guo, and H. Xu. 2016. PPAR-alpha agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. Journal of Molecular Neuroscience 59: 544–553.CrossRefPubMed Huang, D., Q. Zhao, H. Liu, Y. Guo, and H. Xu. 2016. PPAR-alpha agonist WY-14643 inhibits LPS-induced inflammation in synovial fibroblasts via NF-kB pathway. Journal of Molecular Neuroscience 59: 544–553.CrossRefPubMed
44.
Zurück zum Zitat Assuncao, L.S., K.G. Magalhaes, A.B. Carneiro, R. Molinaro, P.E. Almeida, G.C. Atella, et al. 2017. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARgamma dependent mechanisms. Biochimica et Biophysica Acta 1862: 246–254.CrossRefPubMed Assuncao, L.S., K.G. Magalhaes, A.B. Carneiro, R. Molinaro, P.E. Almeida, G.C. Atella, et al. 2017. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARgamma dependent mechanisms. Biochimica et Biophysica Acta 1862: 246–254.CrossRefPubMed
45.
Zurück zum Zitat Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed Bouhlel, M.A., B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, et al. 2007. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism 6: 137–143.CrossRefPubMed
46.
Zurück zum Zitat Carta, A.R., and A. Pisanu. 2013. Modulating microglia activity with PPAR-gamma agonists: A promising therapy for Parkinson's disease? Neurotoxicity Research 23: 112–123.CrossRefPubMed Carta, A.R., and A. Pisanu. 2013. Modulating microglia activity with PPAR-gamma agonists: A promising therapy for Parkinson's disease? Neurotoxicity Research 23: 112–123.CrossRefPubMed
47.
Zurück zum Zitat Rai, A., S. Tripathi, R. Kushwaha, P. Singh, P. Srivastava, S. Sanyal, and S. Bandyopadhyay. 2014. CDK5-induced p-PPARgamma(Ser 112) downregulates GFAP via PPREs in developing rat brain: Effect of metal mixture and troglitazone in astrocytes. Cell Death & Disease 5: e1033.CrossRef Rai, A., S. Tripathi, R. Kushwaha, P. Singh, P. Srivastava, S. Sanyal, and S. Bandyopadhyay. 2014. CDK5-induced p-PPARgamma(Ser 112) downregulates GFAP via PPREs in developing rat brain: Effect of metal mixture and troglitazone in astrocytes. Cell Death & Disease 5: e1033.CrossRef
48.
Zurück zum Zitat Zhang, Y., C. Chen, Y. Jiang, S. Wang, X. Wu, and K. Wang. 2017. PPARgamma coactivator-1alpha (PGC-1alpha) protects neuroblastoma cells against amyloid-beta (Abeta) induced cell death and neuroinflammation via NF-kappaB pathway. BMC Neuroscience 18: 69.CrossRefPubMedPubMedCentral Zhang, Y., C. Chen, Y. Jiang, S. Wang, X. Wu, and K. Wang. 2017. PPARgamma coactivator-1alpha (PGC-1alpha) protects neuroblastoma cells against amyloid-beta (Abeta) induced cell death and neuroinflammation via NF-kappaB pathway. BMC Neuroscience 18: 69.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Choi, M.J., E.J. Lee, J.S. Park, S.N. Kim, E.M. Park, and H.S. Kim. 2017. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-gamma signaling pathway. Biochemical Pharmacology 144: 120–131.CrossRefPubMed Choi, M.J., E.J. Lee, J.S. Park, S.N. Kim, E.M. Park, and H.S. Kim. 2017. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-gamma signaling pathway. Biochemical Pharmacology 144: 120–131.CrossRefPubMed
50.
Zurück zum Zitat Han, Q., Q. Yuan, X. Meng, J. Huo, Y. Bao, and G. Xie. 2017. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-gamma. Oncotarget 8: 42001–42006.PubMedPubMedCentral Han, Q., Q. Yuan, X. Meng, J. Huo, Y. Bao, and G. Xie. 2017. 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-gamma. Oncotarget 8: 42001–42006.PubMedPubMedCentral
51.
Zurück zum Zitat Ji, H., H. Wang, F. Zhang, X. Li, L. Xiang, and S. Aiguo. 2010. PPARgamma agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflammation Research 59: 921–929.CrossRefPubMed Ji, H., H. Wang, F. Zhang, X. Li, L. Xiang, and S. Aiguo. 2010. PPARgamma agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflammation Research 59: 921–929.CrossRefPubMed
52.
Zurück zum Zitat Chacko, B.K., D.W. Scott, R.T. Chandler, and R.P. Patel. 2011. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor gamma ligands. The Journal of Biological Chemistry 286: 38738–38747.CrossRefPubMedPubMedCentral Chacko, B.K., D.W. Scott, R.T. Chandler, and R.P. Patel. 2011. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor gamma ligands. The Journal of Biological Chemistry 286: 38738–38747.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Green, R.S., E.L. Stone, M. Tenno, E. Lehtonen, M.G. Farquhar, and J.D. Marth. 2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27: 308–320.CrossRefPubMed Green, R.S., E.L. Stone, M. Tenno, E. Lehtonen, M.G. Farquhar, and J.D. Marth. 2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27: 308–320.CrossRefPubMed
54.
Zurück zum Zitat Seet, B.T., I. Dikic, M.M. Zhou, and T. Pawson. 2006. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology 7: 473–483.CrossRefPubMed Seet, B.T., I. Dikic, M.M. Zhou, and T. Pawson. 2006. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology 7: 473–483.CrossRefPubMed
55.
Zurück zum Zitat Jackson, S.P., and R. Tjian. 1988. O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell 55: 125–133.CrossRefPubMed Jackson, S.P., and R. Tjian. 1988. O-glycosylation of eukaryotic transcription factors: Implications for mechanisms of transcriptional regulation. Cell 55: 125–133.CrossRefPubMed
56.
Zurück zum Zitat Gewinner, C., G. Hart, N. Zachara, R. Cole, C. Beisenherz-Huss, and B. Groner. 2004. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. The Journal of Biological Chemistry 279: 3563–3572.CrossRefPubMed Gewinner, C., G. Hart, N. Zachara, R. Cole, C. Beisenherz-Huss, and B. Groner. 2004. The coactivator of transcription CREB-binding protein interacts preferentially with the glycosylated form of Stat5. The Journal of Biological Chemistry 279: 3563–3572.CrossRefPubMed
57.
Zurück zum Zitat Ahmad, I., D.C. Hoessli, E. Walker-Nasir, M.I. Choudhary, S.M. Rafik, A.R. Shakoori, and Nasir-ud-Din. 2006. Phosphorylation and glycosylation interplay: Protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family. Journal of Cellular Biochemistry 99: 706–718.CrossRefPubMed Ahmad, I., D.C. Hoessli, E. Walker-Nasir, M.I. Choudhary, S.M. Rafik, A.R. Shakoori, and Nasir-ud-Din. 2006. Phosphorylation and glycosylation interplay: Protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family. Journal of Cellular Biochemistry 99: 706–718.CrossRefPubMed
58.
Zurück zum Zitat Chan, C.P., T.Y. Mak, K.T. Chin, I.O. Ng, and D.Y. Jin. 2010. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. Journal of Cell Science 123: 1438–1448.CrossRefPubMed Chan, C.P., T.Y. Mak, K.T. Chin, I.O. Ng, and D.Y. Jin. 2010. N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. Journal of Cell Science 123: 1438–1448.CrossRefPubMed
59.
Zurück zum Zitat Molyneux, K., D. Wimbury, I. Pawluczyk, M. Muto, and J. Bhachu. 2017. Mertens PR, et al. beta1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney International 92: 1458–1468.CrossRefPubMed Molyneux, K., D. Wimbury, I. Pawluczyk, M. Muto, and J. Bhachu. 2017. Mertens PR, et al. beta1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells. Kidney International 92: 1458–1468.CrossRefPubMed
60.
Zurück zum Zitat Mori, R., T. Kondo, T. Nishie, T. Ohshima, and M. Asano. 2004. Impairment of skin wound healing in beta-1,4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. The American Journal of Pathology 164: 1303–1314.CrossRefPubMedPubMedCentral Mori, R., T. Kondo, T. Nishie, T. Ohshima, and M. Asano. 2004. Impairment of skin wound healing in beta-1,4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. The American Journal of Pathology 164: 1303–1314.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Hu, L., H. Yang, J. Chen, X. Li, Z. Ben, X. He, et al. 2011. beta-1,4-galactosyltransferase-involved in lipopolysaccharide-induced adhesion of Schwann cells. Inflammation Research 60: 169–174.CrossRefPubMed Hu, L., H. Yang, J. Chen, X. Li, Z. Ben, X. He, et al. 2011. beta-1,4-galactosyltransferase-involved in lipopolysaccharide-induced adhesion of Schwann cells. Inflammation Research 60: 169–174.CrossRefPubMed
62.
Zurück zum Zitat Liu, X., C. Cheng, B. Shao, X. Wu, Y. Ji, X. Lu, and A. Shen. 2012. The functional interaction between CDK11p58 and beta-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 35: 1365–1377.CrossRefPubMed Liu, X., C. Cheng, B. Shao, X. Wu, Y. Ji, X. Lu, and A. Shen. 2012. The functional interaction between CDK11p58 and beta-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 35: 1365–1377.CrossRefPubMed
64.
Zurück zum Zitat Tang, W., S. Weng, S. Zhang, W. Wu, L. Dong, X. Shen, S. Zhang, J. Gu, and R. Xue. 2013. Direct interaction between surface beta1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma. Biochemical and Biophysical Research Communications 434: 449–454.CrossRefPubMed Tang, W., S. Weng, S. Zhang, W. Wu, L. Dong, X. Shen, S. Zhang, J. Gu, and R. Xue. 2013. Direct interaction between surface beta1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma. Biochemical and Biophysical Research Communications 434: 449–454.CrossRefPubMed
65.
Zurück zum Zitat Vanhooren, V., R.E. Vandenbroucke, S. Dewaele, E. Van Hamme, J.J. Haigh, T. Hochepied, et al. 2013. Mice overexpressing beta-1,4-galactosyltransferase I are resistant to TNF-induced inflammation and DSS-induced colitis. PLoS One 8: e79883.CrossRefPubMedPubMedCentral Vanhooren, V., R.E. Vandenbroucke, S. Dewaele, E. Van Hamme, J.J. Haigh, T. Hochepied, et al. 2013. Mice overexpressing beta-1,4-galactosyltransferase I are resistant to TNF-induced inflammation and DSS-induced colitis. PLoS One 8: e79883.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Parekh, R.B., A.G. Tse, R.A. Dwek, A.F. Williams, and T.W. Rademacher. 1987. Tissue-specific N-Glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal 6: 1233–1244.PubMedPubMedCentralCrossRef Parekh, R.B., A.G. Tse, R.A. Dwek, A.F. Williams, and T.W. Rademacher. 1987. Tissue-specific N-Glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal 6: 1233–1244.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Schmieder, S., S. Lindenthal, and J. Ehrenfeld. 2001. Tissue-specific N-glycosylation of the ClC-3 chloride channel. Biochemical and Biophysical Research Communications 286: 635–640.CrossRefPubMed Schmieder, S., S. Lindenthal, and J. Ehrenfeld. 2001. Tissue-specific N-glycosylation of the ClC-3 chloride channel. Biochemical and Biophysical Research Communications 286: 635–640.CrossRefPubMed
Metadaten
Titel
β4GalT1 Mediates PPARγ N-Glycosylation to Attenuate Microglia Inflammatory Activation
verfasst von
Xiaojuan Liu
Aihong Li
Yuanyuan Ju
Wangrui Liu
Hui Shi
Renyue Hu
Zijian Zhou
Xiaolei Sun
Publikationsdatum
01.05.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0789-4

Weitere Artikel der Ausgabe 4/2018

Inflammation 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.