Skip to main content
Erschienen in: Annals of Nuclear Medicine 7/2017

27.04.2017 | Original Article

[18F]FP-(+)-DTBZ PET study in a lactacystin-treated rat model of Parkinson disease

verfasst von: Chi-Chang Weng, Siao-Lan Huang, Zi-An Chen, Kun-Ju Lin, Ing-Tsung Hsiao, Tzu-Chen Yen, Mei-Ping Kung, Shiaw-Pyng Wey, Ching-Han Hsu

Erschienen in: Annals of Nuclear Medicine | Ausgabe 7/2017

Einloggen, um Zugang zu erhalten

Abstract

Objective

Lactacystin has been used to establish rodent models of Parkinson disease (PD), with cerebral α-synuclein inclusions. This study evaluated the uptake of [18F]9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ), a vesicular monoamine transporter type 2 (VMAT2)-targeting radiotracer, through positron emission tomography (PET) in lactacystin-treated rat brains.

Methods

Adult male Sprague–Dawley rats were randomly treated with a single intracranial dose of lactacystin (2 or 5 μg) or saline (served as the sham control) into the left medial forebrain bundle. A 30-min static [18F]FP-(+)-DTBZ brain PET scan was performed following an intravenous [18F]FP-(+)-DTBZ dose (approximately 22 MBq) in each animal at 2 and 3 weeks after lactacystin treatment. Upon completing the last PET scans, the animals were killed, and their brains were dissected for ex vivo autoradiography (ARG) and immunohistochemical (IHC) staining of tyrosine hydroxylase (TH) as well as VMAT2.

Results

Both the 2- and 5-μg lactacystin-treated groups exhibited significantly decreased specific [18F]FP-(+)-DTBZ uptake in the ipsilateral striata (I-ST) at 2 weeks (1.51 and 1.16, respectively) and 3 weeks (1.36 and 1.00, respectively) after lactacystin treatment, compared with the uptake in the corresponding contralateral striata (C-ST) (3.48 and 3.08 for the 2- and 5-μg lactacystin-treated groups, respectively, at 2 weeks; 3.36 and 3.11 for the 2- and 5-μg lactacystin-treated groups, respectively, at 3 weeks) and the sham controls (3.34–3.53). Lactacystin-induced decline in I-ST [18F]FP-(+)-DTBZ uptake was also demonstrated through ex vivo ARG, and the corresponding dopaminergic neuron damage was confirmed by the results of TH- and VMAT2-IHC studies.

Conclusions

In this PD model, lactacystin-induced dopaminergic terminal damage in the ipsilateral striatum could be clearly visualized through in vivo [18F]FP-(+)-DTBZ PET imaging. This may serve as a useful approach for evaluating the effectiveness of new treatments for PD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2:a008870.CrossRefPubMedPubMedCentral Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2:a008870.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Miller WC, DeLong MR. Parkinsonian symptomatology. An anatomical and physiological analysis. Ann N Y Acad Sci. 1988;515:287–302.CrossRefPubMed Miller WC, DeLong MR. Parkinsonian symptomatology. An anatomical and physiological analysis. Ann N Y Acad Sci. 1988;515:287–302.CrossRefPubMed
3.
Zurück zum Zitat Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN. Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm Suppl. 1995;46:15–31.PubMed Braak H, Braak E, Yilmazer D, Schultz C, de Vos RA, Jansen EN. Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm Suppl. 1995;46:15–31.PubMed
4.
Zurück zum Zitat Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.CrossRefPubMed Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87.CrossRefPubMed
5.
Zurück zum Zitat Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab. 2006;26:1198–212.CrossRefPubMed Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab. 2006;26:1198–212.CrossRefPubMed
6.
Zurück zum Zitat Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol. 2001;86:237–47.PubMed Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol. 2001;86:237–47.PubMed
7.
Zurück zum Zitat Kilbourn MR, Frey KA, Vander Borght T, Sherman PS. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters. Nucl Med Biol. 1996;23:467–71.CrossRefPubMed Kilbourn MR, Frey KA, Vander Borght T, Sherman PS. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters. Nucl Med Biol. 1996;23:467–71.CrossRefPubMed
8.
Zurück zum Zitat Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol. 2006;33:685–94.CrossRefPubMed Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol. 2006;33:685–94.CrossRefPubMed
9.
Zurück zum Zitat Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, et al. In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med. 2008;49:1171–6.CrossRefPubMed Kung MP, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E, et al. In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med. 2008;49:1171–6.CrossRefPubMed
10.
Zurück zum Zitat Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF. Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol. 2007;34:239–46.CrossRefPubMedPubMedCentral Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF. Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol. 2007;34:239–46.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107–10.CrossRefPubMed Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5:107–10.CrossRefPubMed
12.
Zurück zum Zitat Langston JW, Ballard PA Jr. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med. 1983;309:310.PubMed Langston JW, Ballard PA Jr. Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med. 1983;309:310.PubMed
13.
Zurück zum Zitat Shimoji M, Zhang L, Mandir AS, Dawson VL, Dawson TM. Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res. 2005;134:103–8.CrossRefPubMed Shimoji M, Zhang L, Mandir AS, Dawson VL, Dawson TM. Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res. 2005;134:103–8.CrossRefPubMed
14.
Zurück zum Zitat Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164:1357–91.CrossRefPubMedPubMedCentral Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164:1357–91.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.CrossRefPubMedPubMedCentral Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA. 1998;95:6469–73.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett. 2002;326:155–8.CrossRefPubMed McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett. 2002;326:155–8.CrossRefPubMed
17.
Zurück zum Zitat Vernon AC, Johansson SM, Modo MM. Non-invasive evaluation of nigrostriatal neuropathology in a proteasome inhibitor rodent model of Parkinson’s disease. BMC Neurosci. 2010;11:1.CrossRefPubMedPubMedCentral Vernon AC, Johansson SM, Modo MM. Non-invasive evaluation of nigrostriatal neuropathology in a proteasome inhibitor rodent model of Parkinson’s disease. BMC Neurosci. 2010;11:1.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Vernon AC, Crum WR, Johansson SM, Modo M. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS One. 2011;6:e17269.CrossRefPubMedPubMedCentral Vernon AC, Crum WR, Johansson SM, Modo M. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS One. 2011;6:e17269.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Busceti CL, et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci. 2003;23:8955–66.PubMed Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Busceti CL, et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci. 2003;23:8955–66.PubMed
20.
Zurück zum Zitat Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci Lett. 2005;380:93–8.CrossRefPubMed Miwa H, Kubo T, Suzuki A, Nishi K, Kondo T. Retrograde dopaminergic neuron degeneration following intrastriatal proteasome inhibition. Neurosci Lett. 2005;380:93–8.CrossRefPubMed
21.
Zurück zum Zitat McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56:149–62.CrossRefPubMed McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56:149–62.CrossRefPubMed
22.
Zurück zum Zitat McNaught KS, Olanow CW. Proteasome inhibitor–induced model of Parkinson’s disease. Ann Neurol. 2006;60:243–7.CrossRefPubMed McNaught KS, Olanow CW. Proteasome inhibitor–induced model of Parkinson’s disease. Ann Neurol. 2006;60:243–7.CrossRefPubMed
23.
Zurück zum Zitat Bové J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, et al. Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol. 2006;60:260–4.CrossRefPubMed Bové J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, et al. Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol. 2006;60:260–4.CrossRefPubMed
24.
Zurück zum Zitat Manning-Boğ AB, Reaney SH, Chou VP, Johnston LC, McCormack AL, Johnston J, et al. Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann Neurol. 2006;60:256–60.CrossRefPubMed Manning-Boğ AB, Reaney SH, Chou VP, Johnston LC, McCormack AL, Johnston J, et al. Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann Neurol. 2006;60:256–60.CrossRefPubMed
25.
Zurück zum Zitat Kordower JH, Kanaan NM, Chu Y, Suresh Babu R, Stansell J, Terpstra BT, et al. Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol. 2006;60:264–8.CrossRefPubMed Kordower JH, Kanaan NM, Chu Y, Suresh Babu R, Stansell J, Terpstra BT, et al. Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol. 2006;60:264–8.CrossRefPubMed
26.
Zurück zum Zitat Mathur BN, Neely MD, Dyllick-Brenzinger M, Tandon A, Deutch AY. Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration. Brain Res. 2007;1168:83–9.CrossRefPubMedPubMedCentral Mathur BN, Neely MD, Dyllick-Brenzinger M, Tandon A, Deutch AY. Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration. Brain Res. 2007;1168:83–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Paxinos G. The rat brain in stereotaxic coordinates—the new coronal set. 5th ed. Cambridge: Elsevier Academic Press; 2004. Paxinos G. The rat brain in stereotaxic coordinates—the new coronal set. 5th ed. Cambridge: Elsevier Academic Press; 2004.
28.
Zurück zum Zitat Lin KJ, Weng YH, Wey SP, Hsiao T, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med. 2010;51:1480–5.CrossRefPubMed Lin KJ, Weng YH, Wey SP, Hsiao T, Lu CS, Skovronsky D, et al. Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med. 2010;51:1480–5.CrossRefPubMed
29.
Zurück zum Zitat Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O’Keefe G, Jones G, Kung HF. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133. J Nucl Med. 2010;51(2):223–8.CrossRefPubMed Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O’Keefe G, Jones G, Kung HF. In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18F-AV-133. J Nucl Med. 2010;51(2):223–8.CrossRefPubMed
30.
Zurück zum Zitat Hsiao T, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA neurology. 2014;71(6):758–66.CrossRefPubMed Hsiao T, Weng YH, Hsieh CJ, Lin WY, Wey SP, Kung MP, Yen TC, Lu CS, Lin KJ. Correlation of Parkinson disease severity and 18F-DTBZ positron emission tomography. JAMA neurology. 2014;71(6):758–66.CrossRefPubMed
31.
Zurück zum Zitat Bonsi P, Cuomo D, Martella G, Sciamanna G, Tolu M, Calabresi P, et al. Mitochondrial toxins in Basal Ganglia disorders: from animal models to therapeutic strategies. Curr Neuropharmacol. 2006;4:69–75.CrossRefPubMedPubMedCentral Bonsi P, Cuomo D, Martella G, Sciamanna G, Tolu M, Calabresi P, et al. Mitochondrial toxins in Basal Ganglia disorders: from animal models to therapeutic strategies. Curr Neuropharmacol. 2006;4:69–75.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Lorenc-Koci E, Lenda T, Antkiewicz-Michaluk L, Wardas J, Domin H, Śmiałowska M, et al. Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson’s disease in rats. Neurochem Int. 2011;58:839–49.CrossRefPubMed Lorenc-Koci E, Lenda T, Antkiewicz-Michaluk L, Wardas J, Domin H, Śmiałowska M, et al. Different effects of intranigral and intrastriatal administration of the proteasome inhibitor lactacystin on typical neurochemical and histological markers of Parkinson’s disease in rats. Neurochem Int. 2011;58:839–49.CrossRefPubMed
33.
Zurück zum Zitat Mackey S, Jing Y, Flores J, Dinelle K, Doudet DJ. Direct intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography, immunohistochemistry. Exp Neurol. 2013;247:19–24.CrossRefPubMed Mackey S, Jing Y, Flores J, Dinelle K, Doudet DJ. Direct intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography, immunohistochemistry. Exp Neurol. 2013;247:19–24.CrossRefPubMed
Metadaten
Titel
[18F]FP-(+)-DTBZ PET study in a lactacystin-treated rat model of Parkinson disease
verfasst von
Chi-Chang Weng
Siao-Lan Huang
Zi-An Chen
Kun-Ju Lin
Ing-Tsung Hsiao
Tzu-Chen Yen
Mei-Ping Kung
Shiaw-Pyng Wey
Ching-Han Hsu
Publikationsdatum
27.04.2017
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 7/2017
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-017-1174-3

Weitere Artikel der Ausgabe 7/2017

Annals of Nuclear Medicine 7/2017 Zur Ausgabe