Skip to main content
Erschienen in:

18.03.2021 | Review

3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment

verfasst von: Mingxue Li, Canrong Wu, Yueying Yang, Mengzhu Zheng, Silin Yu, Jinhui Wang, Lixia Chen, Hua Li

Erschienen in: Cellular Oncology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Background

Metabolic changes have been recognized as an important hallmark of cancer cells. Cancer cells can promote their own growth and proliferation through metabolic reprogramming. Particularly, serine metabolism has frequently been reported to be dysregulated in tumor cells. 3-Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the serine biosynthesis pathway and acts as a rate-limiting enzyme involved in metabolic reprogramming. PHGDH upregulation has been observed in many tumor types, and inhibition of PHGDH expression has been reported to inhibit the proliferation of PHGDH-overexpressing tumor cells, indicating that it may be utilized as a target for cancer treatment. Recently identified inhibitors targeting PHGDH have already shown effectiveness. A further in-depth analysis and concomitant development of PHGDH inhibitors will be of great value for the treatment of cancer.

Conclusions

In this review we describe in detail the role of PHGDH in various cancers and inhibitors that have recently been identified to highlight progression in cancer treatment. We also discuss the development of new drugs and treatment modalities based on PHGDH targets. Overexpression of PHGDH has been observed in melanoma, breast cancer, nasopharyngeal carcinoma, parathyroid adenoma, glioma, cervical cancer and others. PHGDH may serve as a molecular biomarker for the diagnosis, prognosis and treatment of these cancers. The design and development of novel PHGDH inhibitors may have broad implications for cancer treatment. Therapeutic strategies of PHGDH inhibitors in combination with traditional chemotherapeutic drugs may provide new perspectives for precision medicine and effective personalized treatment for cancer patients.

Graphical abstract

Literatur
1.
Zurück zum Zitat G.A. Barker, J.C. Ellory, The identification of neutral amino acid transport systems. Exp. Physiol. 75, 3–26 (1990)PubMedCrossRef G.A. Barker, J.C. Ellory, The identification of neutral amino acid transport systems. Exp. Physiol. 75, 3–26 (1990)PubMedCrossRef
2.
Zurück zum Zitat M. Palacín, R. Estévez, J. Bertran, A. Zorzano, Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969–1054 (1998)PubMedCrossRef M. Palacín, R. Estévez, J. Bertran, A. Zorzano, Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78, 969–1054 (1998)PubMedCrossRef
3.
Zurück zum Zitat C.F. Labuschagne, N.J. van den Broek, G.M. Mackay, K.H. Vousden, O.D. Maddocks, Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7(4), 1248–1258 (2014)PubMedCrossRef C.F. Labuschagne, N.J. van den Broek, G.M. Mackay, K.H. Vousden, O.D. Maddocks, Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7(4), 1248–1258 (2014)PubMedCrossRef
5.
Zurück zum Zitat M.R. Sullivan, K.R. Mattaini, E.A. Dennstedt, A.A. Nguyen, S. Sivanand, M.F. Reilly, K. Meeth, A. Muir, A.M. Darnell, M.W. Bosenberg, C.A. Lewis, M.G. Vander Heiden, Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421 (2019)PubMedPubMedCentralCrossRef M.R. Sullivan, K.R. Mattaini, E.A. Dennstedt, A.A. Nguyen, S. Sivanand, M.F. Reilly, K. Meeth, A. Muir, A.M. Darnell, M.W. Bosenberg, C.A. Lewis, M.G. Vander Heiden, Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421 (2019)PubMedPubMedCentralCrossRef
6.
7.
Zurück zum Zitat K. Snell, Y. Natsumeda, G. Weber, The modulation of serine metabolism in hepatoma 3924A during different phases of cellular proliferation in culture. Biochem. J. 245, 609–612 (1987)PubMedPubMedCentralCrossRef K. Snell, Y. Natsumeda, G. Weber, The modulation of serine metabolism in hepatoma 3924A during different phases of cellular proliferation in culture. Biochem. J. 245, 609–612 (1987)PubMedPubMedCentralCrossRef
8.
9.
Zurück zum Zitat E. Gottlieb, I.P. Tomlinson, Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5(11), 857–866 (2005)PubMedCrossRef E. Gottlieb, I.P. Tomlinson, Mitochondrial tumour suppressors: a genetic and biochemical update. Nat. Rev. Cancer 5(11), 857–866 (2005)PubMedCrossRef
10.
Zurück zum Zitat S.G. Dann, R.T. Abraham, Serine biosynthesis: fuel for the melanoma cell growth engine. Pigment Cell Melanoma Res. 24, 875–877 (2011)PubMedCrossRef S.G. Dann, R.T. Abraham, Serine biosynthesis: fuel for the melanoma cell growth engine. Pigment Cell Melanoma Res. 24, 875–877 (2011)PubMedCrossRef
11.
Zurück zum Zitat E. Mullarky, L.L. Lairson, L.C. Cantley, C.A. Lyssiotis, A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Mol. Cell. Oncol. 3, e1164280 (2016) E. Mullarky, L.L. Lairson, L.C. Cantley, C.A. Lyssiotis, A novel small-molecule inhibitor of 3-phosphoglycerate dehydrogenase. Mol. Cell. Oncol. 3, e1164280 (2016)
13.
Zurück zum Zitat E. Mullarky, K.R. Mattaini, M.G. Vander Heiden, L.C. Cantley, J.W. Locasale, PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 24, 1112–1115 (2011)PubMedCrossRef E. Mullarky, K.R. Mattaini, M.G. Vander Heiden, L.C. Cantley, J.W. Locasale, PHGDH amplification and altered glucose metabolism in human melanoma. Pigment Cell Melanoma Res. 24, 1112–1115 (2011)PubMedCrossRef
14.
Zurück zum Zitat I. Kraoua, E. Wiame, L. Kraoua, F. Nasrallah, H. Benrhouma, A. Rouissi, I. Turki, H. Chaabouni, G. Briand, N. Kaabachi, E. Van Schaftingen, N. Gouider-Khouja, 3-Phosphoglycerate dehydrogenase deficiency: description of two new cases in Tunisia and review of the literature. Neuropediatrics 44(5), 281–285 (2013)PubMedCrossRef I. Kraoua, E. Wiame, L. Kraoua, F. Nasrallah, H. Benrhouma, A. Rouissi, I. Turki, H. Chaabouni, G. Briand, N. Kaabachi, E. Van Schaftingen, N. Gouider-Khouja, 3-Phosphoglycerate dehydrogenase deficiency: description of two new cases in Tunisia and review of the literature. Neuropediatrics 44(5), 281–285 (2013)PubMedCrossRef
17.
Zurück zum Zitat J.E. Unterlass, N.J. Curtin, Warburg and Krebs and related effects in cancer. Expert Rev. Mol. Med. 21, e4 (2019) J.E. Unterlass, N.J. Curtin, Warburg and Krebs and related effects in cancer. Expert Rev. Mol. Med. 21, e4 (2019)
18.
Zurück zum Zitat R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)PubMedCrossRef R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism. Nat. Rev. Cancer 11(2), 85–95 (2011)PubMedCrossRef
19.
Zurück zum Zitat O. Warburg, Über den stoffwechsel der carcinom-zelle. J. Mol. Med. 4(12), 534–536 (1925) O. Warburg, Über den stoffwechsel der carcinom-zelle. J. Mol. Med. 4(12), 534–536 (1925)
21.
Zurück zum Zitat O. Warburg, K. Posener, E. Negelein, Ueber den stoffwechsel der tumoren. Biochem. Z. 152, 319–344 (1924) O. Warburg, K. Posener, E. Negelein, Ueber den stoffwechsel der tumoren. Biochem. Z. 152, 319–344 (1924)
22.
Zurück zum Zitat S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)PubMedCrossRef S.Y. Lunt, M.G. Vander Heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)PubMedCrossRef
23.
Zurück zum Zitat I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, G. Melino, Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014)PubMedPubMedCentralCrossRef I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, G. Melino, Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014)PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat P.M. Tedeschi, E.K. Markert, M. Gounder, H. Lin, D. Dvorzhinski, S.C. Dolfi, L.L. Chan, J. Qiu, R.S. DiPaola, K.M. Hirshfield, L.G. Boros, J.R. Bertino, Z.N. Oltvai, A. Vazquez, Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 4, e877 (2013) P.M. Tedeschi, E.K. Markert, M. Gounder, H. Lin, D. Dvorzhinski, S.C. Dolfi, L.L. Chan, J. Qiu, R.S. DiPaola, K.M. Hirshfield, L.G. Boros, J.R. Bertino, Z.N. Oltvai, A. Vazquez, Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 4, e877 (2013)
26.
Zurück zum Zitat R.J. DeBerardinis, T. Cheng, Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3), 313–324 (2010)PubMedCrossRef R.J. DeBerardinis, T. Cheng, Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3), 313–324 (2010)PubMedCrossRef
27.
29.
Zurück zum Zitat O. Kuge, K. Hasegawa, K. Saito, M. Nishijima, Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U. S. A. 95, 4199–4203 (1998) O. Kuge, K. Hasegawa, K. Saito, M. Nishijima, Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U. S. A. 95, 4199–4203 (1998)
30.
31.
Zurück zum Zitat A.H. Futerman, H. Riezman, The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312–318 (2005)PubMedCrossRef A.H. Futerman, H. Riezman, The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312–318 (2005)PubMedCrossRef
32.
Zurück zum Zitat M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16(10), 650–662 (2016)PubMedCrossRef M. Yang, K.H. Vousden, Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16(10), 650–662 (2016)PubMedCrossRef
33.
Zurück zum Zitat J.S. Metcalf, R.A. Dunlop, J.T. Powell, S.A. Banack, P.A. Cox, L-serine: a naturally-occurring amino acid with therapeutic potential. Neurotox. Res. 33, 213–221 (2018)PubMedCrossRef J.S. Metcalf, R.A. Dunlop, J.T. Powell, S.A. Banack, P.A. Cox, L-serine: a naturally-occurring amino acid with therapeutic potential. Neurotox. Res. 33, 213–221 (2018)PubMedCrossRef
34.
Zurück zum Zitat K. Okabe, I. Usui, K. Yaku, Y. Hirabayashi, K. Tobe, T. Nakagawa, Deletion of PHGDH in adipocytes improves glucose intolerance in diet-induced obese mice. Biochem. Biophys. Res. Commun. 504, 309–314 (2018)PubMedCrossRef K. Okabe, I. Usui, K. Yaku, Y. Hirabayashi, K. Tobe, T. Nakagawa, Deletion of PHGDH in adipocytes improves glucose intolerance in diet-induced obese mice. Biochem. Biophys. Res. Commun. 504, 309–314 (2018)PubMedCrossRef
35.
Zurück zum Zitat S. Vandekeere, C. Dubois, J. Kalucka, M.R. Sullivan, M. García-Caballero, J. Goveia, R. Chen, F.F. Diehl, L. Bar-Lev, J. Souffreau, A. Pircher, S. Kumar, S. Vinckier, Y. Hirabayashi, S. Furuya, L. Schoonjans, G. Eelen, B. Ghesquière, E. Keshet, X. Li, M.G. Vander Heiden, M. Dewerchin, P. Carmeliet, Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28, 573–587 (2018)PubMedCrossRef S. Vandekeere, C. Dubois, J. Kalucka, M.R. Sullivan, M. García-Caballero, J. Goveia, R. Chen, F.F. Diehl, L. Bar-Lev, J. Souffreau, A. Pircher, S. Kumar, S. Vinckier, Y. Hirabayashi, S. Furuya, L. Schoonjans, G. Eelen, B. Ghesquière, E. Keshet, X. Li, M.G. Vander Heiden, M. Dewerchin, P. Carmeliet, Serine synthesis via PHGDH is essential for heme production in endothelial cells. Cell Metab. 28, 573–587 (2018)PubMedCrossRef
36.
Zurück zum Zitat A. Schulze, A.L. Harris, How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012)PubMedCrossRef A. Schulze, A.L. Harris, How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012)PubMedCrossRef
37.
Zurück zum Zitat E. Piskounova, M. Agathocleous, M.M. Murphy, Z. Hu, S.E. Huddlestun, Z. Zhao, A.M. Leitch, T.M. Johnson, R.J. DeBerardinis, S.J. Morrison, Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015)PubMedPubMedCentralCrossRef E. Piskounova, M. Agathocleous, M.M. Murphy, Z. Hu, S.E. Huddlestun, Z. Zhao, A.M. Leitch, T.M. Johnson, R.J. DeBerardinis, S.J. Morrison, Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015)PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat E. Mullarky, L.C. Cantley, Diverting glycolysis to combat oxidative stress. (Springer, Tokyo, 2015), pp. 3–23 E. Mullarky, L.C. Cantley, Diverting glycolysis to combat oxidative stress. (Springer, Tokyo, 2015), pp. 3–23
39.
Zurück zum Zitat J. Ye, J. Fan, S. Venneti, Y.W. Wan, B.R. Pawel, J. Zhang, L.W. Finley, C. Lu, T. Lindsten, J.R. Cross, G. Qing, Z. Liu, M.C. Simon, J.D. Rabinowitz, C.B. Thompson, Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014)PubMedPubMedCentralCrossRef J. Ye, J. Fan, S. Venneti, Y.W. Wan, B.R. Pawel, J. Zhang, L.W. Finley, C. Lu, T. Lindsten, J.R. Cross, G. Qing, Z. Liu, M.C. Simon, J.D. Rabinowitz, C.B. Thompson, Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014)PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat J.W. Locasale, A.R. Grassian, T. Melman, C.A. Lyssiotis, K.R. Mattaini, A.J. Bass, G. Heffron, C.M. Metallo, T. Muranen, H. Sharfi, A.T. Sasaki, D. Anastasiou, E. Mullarky, N.I. Vokes, M. Sasaki, R. Beroukhim, G. Stephanopoulos, A.H. Ligon, M. Meyerson, A.L. Richardson, L. Chin, G. Wagner, J.M. Asara, J.S. Brugge, L.C. Cantley, M.G. Vander Heiden, Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011)PubMedPubMedCentralCrossRef J.W. Locasale, A.R. Grassian, T. Melman, C.A. Lyssiotis, K.R. Mattaini, A.J. Bass, G. Heffron, C.M. Metallo, T. Muranen, H. Sharfi, A.T. Sasaki, D. Anastasiou, E. Mullarky, N.I. Vokes, M. Sasaki, R. Beroukhim, G. Stephanopoulos, A.H. Ligon, M. Meyerson, A.L. Richardson, L. Chin, G. Wagner, J.M. Asara, J.S. Brugge, L.C. Cantley, M.G. Vander Heiden, Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011)PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat R. Possemato, K.M. Marks, Y.D. Shaul, M.E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H.K. Woo, H.G. Jang, A.K. Jha, W.W. Chen, F.G. Barrett, N. Stransky, Z.Y. Tsun, G.S. Cowley, J. Barretina, N.Y. Kalaany, P.P. Hsu, K. Ottina, A.M. Chan, B. Yuan, L.A. Garraway, D.E. Root, M. Mino-Kenudson, E.F. Brachtel, E.M. Driggers, D.M. Sabatini, Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011)PubMedPubMedCentralCrossRef R. Possemato, K.M. Marks, Y.D. Shaul, M.E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H.K. Woo, H.G. Jang, A.K. Jha, W.W. Chen, F.G. Barrett, N. Stransky, Z.Y. Tsun, G.S. Cowley, J. Barretina, N.Y. Kalaany, P.P. Hsu, K. Ottina, A.M. Chan, B. Yuan, L.A. Garraway, D.E. Root, M. Mino-Kenudson, E.F. Brachtel, E.M. Driggers, D.M. Sabatini, Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011)PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat D. Samanta, Y. Park, S.A. Andrabi, L.M. Shelton, D.M. Gilkes, G.L. Semenza, PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016)PubMedCrossRef D. Samanta, Y. Park, S.A. Andrabi, L.M. Shelton, D.M. Gilkes, G.L. Semenza, PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016)PubMedCrossRef
43.
Zurück zum Zitat S. Pollari, S.M. Käkönen, H. Edgren, M. Wolf, P. Kohonen, H. Sara, T. Guise, M. Nees, O. Kallioniemi, Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421–430 (2011)PubMedCrossRef S. Pollari, S.M. Käkönen, H. Edgren, M. Wolf, P. Kohonen, H. Sara, T. Guise, M. Nees, O. Kallioniemi, Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res. Treat. 125, 421–430 (2011)PubMedCrossRef
44.
Zurück zum Zitat G.M. DeNicola, P.H. Chen, E. Mullarky, J.A. Sudderth, Z. Hu, D. Wu, H. Tang, Y. Xie, J.M. Asara, K.E. Huffman, I.I. Wistuba, J.D. Minna, R.J. DeBerardinis, L.C. Cantley, Erratum: NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 48, 473 (2016) G.M. DeNicola, P.H. Chen, E. Mullarky, J.A. Sudderth, Z. Hu, D. Wu, H. Tang, Y. Xie, J.M. Asara, K.E. Huffman, I.I. Wistuba, J.D. Minna, R.J. DeBerardinis, L.C. Cantley, Erratum: NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 48, 473 (2016)
45.
Zurück zum Zitat S. Ravez, Q. Spillier, R. Marteau, O. Feron, R. Frédérick, Challenges and opportunities in the development of serine synthetic pathway inhibitors for cancer therapy. J. Med. Chem. 60, 1227–1237 (2017)PubMedCrossRef S. Ravez, Q. Spillier, R. Marteau, O. Feron, R. Frédérick, Challenges and opportunities in the development of serine synthetic pathway inhibitors for cancer therapy. J. Med. Chem. 60, 1227–1237 (2017)PubMedCrossRef
46.
Zurück zum Zitat K. Snell, Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul. 22, 325–400 (1984)PubMedCrossRef K. Snell, Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzyme Regul. 22, 325–400 (1984)PubMedCrossRef
47.
Zurück zum Zitat K. Snell, Enzymes of serine metabolism in normal and neoplastic rat tissues. Biochim. Biophys. Acta 843, 276–281 (1985)PubMedCrossRef K. Snell, Enzymes of serine metabolism in normal and neoplastic rat tissues. Biochim. Biophys. Acta 843, 276–281 (1985)PubMedCrossRef
48.
Zurück zum Zitat K. Snell, The duality of pathways for serine biosynthesis is a fallacy. Trends Biochem. Sci. 11, 241–243 (1986)CrossRef K. Snell, The duality of pathways for serine biosynthesis is a fallacy. Trends Biochem. Sci. 11, 241–243 (1986)CrossRef
49.
Zurück zum Zitat D.A. Walsh, H.J. Sallach, Comparative studies on the pathways for serine biosynthesis in animal tissues. J. Biol. Chem. 241, 4068–4076 (1966)PubMedCrossRef D.A. Walsh, H.J. Sallach, Comparative studies on the pathways for serine biosynthesis in animal tissues. J. Biol. Chem. 241, 4068–4076 (1966)PubMedCrossRef
50.
Zurück zum Zitat G.P. Cheung, J. Cotropia, H.J. Sallach, The effects of dietary protein on the hepatic enzymes of serine metabolism in the rabbit. Arch. Biochem. Biophys. 129, 672–682 (1969)PubMedCrossRef G.P. Cheung, J. Cotropia, H.J. Sallach, The effects of dietary protein on the hepatic enzymes of serine metabolism in the rabbit. Arch. Biochem. Biophys. 129, 672–682 (1969)PubMedCrossRef
51.
Zurück zum Zitat E.V. Rowsell, K. Snell, J.A. Carnie, A.H. Al-Tai, Liver-L-alanine-glyoxylate and L-serine-pyruvate aminotransferase activities: an apparent association with gluconeogenesis. Biochem. J. 115, 1071–1073 (1969)PubMedPubMedCentralCrossRef E.V. Rowsell, K. Snell, J.A. Carnie, A.H. Al-Tai, Liver-L-alanine-glyoxylate and L-serine-pyruvate aminotransferase activities: an apparent association with gluconeogenesis. Biochem. J. 115, 1071–1073 (1969)PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat P. Stover, V. Schirch, Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J. Biol. Chem. 265, 14227–14233 (1990)PubMedCrossRef P. Stover, V. Schirch, Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J. Biol. Chem. 265, 14227–14233 (1990)PubMedCrossRef
53.
Zurück zum Zitat A.S. Tibbetts, D.R. Appling, R. Appling Dean, Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010)PubMedCrossRef A.S. Tibbetts, D.R. Appling, R. Appling Dean, Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010)PubMedCrossRef
54.
Zurück zum Zitat M.G. Vander Heiden, J.W. Locasale, K.D. Swanson, H. Sharfi, G.J. Heffron, D. Amador-Noguez, H.R. Christofk, G. Wagner, J.D. Rabinowitz, J.M. Asara, L.C. Cantley, Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010)PubMedCrossRef M.G. Vander Heiden, J.W. Locasale, K.D. Swanson, H. Sharfi, G.J. Heffron, D. Amador-Noguez, H.R. Christofk, G. Wagner, J.D. Rabinowitz, J.M. Asara, L.C. Cantley, Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010)PubMedCrossRef
56.
Zurück zum Zitat L. Sun, L. Song, Q. Wan, G. Wu, X. Li, Y. Wang, J. Wang, Z. Liu, X. Zhong, X. He, S. Shen, X. Pan, A. Li, Y. Wang, P. Gao, H. Tang, H. Zhang, cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25(4), 429–444 (2015)PubMedPubMedCentralCrossRef L. Sun, L. Song, Q. Wan, G. Wu, X. Li, Y. Wang, J. Wang, Z. Liu, X. Zhong, X. He, S. Shen, X. Pan, A. Li, Y. Wang, P. Gao, H. Tang, H. Zhang, cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25(4), 429–444 (2015)PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat G.A. Grant, A new family of 2-hydroxyacid dehydrogenases. Biochem. Biophys. Res. Commun. 165, 1371–1374 (1989)PubMedCrossRef G.A. Grant, A new family of 2-hydroxyacid dehydrogenases. Biochem. Biophys. Res. Commun. 165, 1371–1374 (1989)PubMedCrossRef
58.
Zurück zum Zitat C. Vinals, E. Depiereux, E. Feytmans, Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem. Biophys. Res. Commun. 192, 182–188 (1993)PubMedCrossRef C. Vinals, E. Depiereux, E. Feytmans, Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. Biochem. Biophys. Res. Commun. 192, 182–188 (1993)PubMedCrossRef
59.
Zurück zum Zitat D.M. Greenberg, A. Ichihara, Further studies on the pathway of serine formation from carbohydrate. J. Biol. Chem. 224(1), 331–340 (1957)PubMedCrossRef D.M. Greenberg, A. Ichihara, Further studies on the pathway of serine formation from carbohydrate. J. Biol. Chem. 224(1), 331–340 (1957)PubMedCrossRef
60.
Zurück zum Zitat J.D. Goldberg, T. Yoshida, P. Brick, Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 236, 1123–1140 (1994)PubMedCrossRef J.D. Goldberg, T. Yoshida, P. Brick, Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 236, 1123–1140 (1994)PubMedCrossRef
61.
Zurück zum Zitat V.S. Lamzin, Z. Dauter, V.O. Popov, E.H. Harutyunyan, K.S. Wilson, High resolution structures of holo and apo formate dehydrogenase. J. Mol. Biol. 236, 759–785 (1994)PubMedCrossRef V.S. Lamzin, Z. Dauter, V.O. Popov, E.H. Harutyunyan, K.S. Wilson, High resolution structures of holo and apo formate dehydrogenase. J. Mol. Biol. 236, 759–785 (1994)PubMedCrossRef
62.
Zurück zum Zitat A. Ichihara, D.M. Greenberg, Studies on the purification and properties of D-glyceric acid kinase of liver. J. Biol. Chem. 225, 949–958 (1957)PubMedCrossRef A. Ichihara, D.M. Greenberg, Studies on the purification and properties of D-glyceric acid kinase of liver. J. Biol. Chem. 225, 949–958 (1957)PubMedCrossRef
63.
Zurück zum Zitat J.E. Willis, H.J. Sallach, The occurrence of D-3-phosphoglycerate dehydrogenase in animal tissue. Biochim. Biophys. Acta 81(1), 39–54 (1964) J.E. Willis, H.J. Sallach, The occurrence of D-3-phosphoglycerate dehydrogenase in animal tissue. Biochim. Biophys. Acta 81(1), 39–54 (1964)
64.
Zurück zum Zitat M.O. Kinoshita, Y. Shinoda, K. Sakai, T. Hashikawa, M. Watanabe, T. Machida, Y. Hirabayashi, S. Furuya, Selective upregulation of 3-phosphoglycerate dehydrogenase (PHGDH) expression in adult subventricular zone neurogenic niche. Neurosci. Lett. 453, 21–26 (2009)PubMedCrossRef M.O. Kinoshita, Y. Shinoda, K. Sakai, T. Hashikawa, M. Watanabe, T. Machida, Y. Hirabayashi, S. Furuya, Selective upregulation of 3-phosphoglycerate dehydrogenase (PHGDH) expression in adult subventricular zone neurogenic niche. Neurosci. Lett. 453, 21–26 (2009)PubMedCrossRef
65.
Zurück zum Zitat L.W. Klomp, T.J. de Koning, H.E. Malingré, E.A. van Beurden, M. Brink, F.L. Opdam, M. Duran, J. Jaeken, M. Pineda, L. Van Maldergem, B.T. Poll-The, I.E. van den Berg, R. Berger, Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency-a neurometabolic disorder associated with reduced L-serine biosynthesis. Am. J. Hum. Genet. 67, 1389–1399 (2000)PubMedPubMedCentralCrossRef L.W. Klomp, T.J. de Koning, H.E. Malingré, E.A. van Beurden, M. Brink, F.L. Opdam, M. Duran, J. Jaeken, M. Pineda, L. Van Maldergem, B.T. Poll-The, I.E. van den Berg, R. Berger, Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency-a neurometabolic disorder associated with reduced L-serine biosynthesis. Am. J. Hum. Genet. 67, 1389–1399 (2000)PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat K. Yoshida, S. Furuya, S. Osuka, J. Mitoma, Y. Shinoda, M. Watanabe, N. Azuma, H. Tanaka, T. Hashikawa, S. Itohara, Y. Hirabayashi, Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J. Biol. Chem. 279, 3573–3577 (2004)PubMedCrossRef K. Yoshida, S. Furuya, S. Osuka, J. Mitoma, Y. Shinoda, M. Watanabe, N. Azuma, H. Tanaka, T. Hashikawa, S. Itohara, Y. Hirabayashi, Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality. J. Biol. Chem. 279, 3573–3577 (2004)PubMedCrossRef
67.
Zurück zum Zitat S. Furuya, T. Tabata, J. Mitoma, K. Yamada, M. Yamasaki, A. Makino, T. Yamamoto, M. Watanabe, M. Kano, Y. Hirabayashi, L-serine and glycine serve as major astroglia-derived trophic factors for cerebellar purkinje neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 11528–11533 (2000) S. Furuya, T. Tabata, J. Mitoma, K. Yamada, M. Yamasaki, A. Makino, T. Yamamoto, M. Watanabe, M. Kano, Y. Hirabayashi, L-serine and glycine serve as major astroglia-derived trophic factors for cerebellar purkinje neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 11528–11533 (2000)
68.
Zurück zum Zitat K. Yamasaki, K. Yamada, S. Furuya, J. Mitoma, Y. Hirabayashi, Y. Watanabe, 3-Phosphoglycerate dehydrogenase (3PGDH), a key enzyme for L-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J. Neurosci. 21, 7691–7704 (2001)PubMedPubMedCentralCrossRef K. Yamasaki, K. Yamada, S. Furuya, J. Mitoma, Y. Hirabayashi, Y. Watanabe, 3-Phosphoglycerate dehydrogenase (3PGDH), a key enzyme for L-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J. Neurosci. 21, 7691–7704 (2001)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Y. Achouri, M.H. Rider, E.V.V. Schaftingen, M. Robbi, Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 323(2), 365–370 (1997)PubMedPubMedCentralCrossRef Y. Achouri, M.H. Rider, E.V.V. Schaftingen, M. Robbi, Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 323(2), 365–370 (1997)PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat K.L. Tobey, G.A. Grant, The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 261, 12179–12183 (1986)PubMedCrossRef K.L. Tobey, G.A. Grant, The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 261, 12179–12183 (1986)PubMedCrossRef
71.
Zurück zum Zitat R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)PubMedCrossRef R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R. Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995)PubMedCrossRef
72.
Zurück zum Zitat A. Sorokin, E. Zumstein, V. Azevedo, S.D. Ehrlich, P. Serror, The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10, 385–395 (1993)PubMedCrossRef A. Sorokin, E. Zumstein, V. Azevedo, S.D. Ehrlich, P. Serror, The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol. Microbiol. 10, 385–395 (1993)PubMedCrossRef
73.
Zurück zum Zitat H.M. Cho, D.Y. Jun, M.A. Bae, Y.H. Kim, Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene. Gene 245, 193–201 (2000)PubMedCrossRef H.M. Cho, D.Y. Jun, M.A. Bae, Y.H. Kim, Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene. Gene 245, 193–201 (2000)PubMedCrossRef
74.
Zurück zum Zitat R. Wilson, R. Ainscough, K. Anderson, C. Baynes, M. Berks, J. Bonfield, J. Burton, M. Connell, T. Copsey, J. Cooper, 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994) R. Wilson, R. Ainscough, K. Anderson, C. Baynes, M. Berks, J. Bonfield, J. Burton, M. Connell, T. Copsey, J. Cooper, 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994)
75.
Zurück zum Zitat J. Mitoma, S. Furuya, M. Shimizu, Y. Shinoda, K. Yoshida, N. Azuma, H. Tanaka, Y. Suzuki, Y. Hirabayashi, Mouse 3-phosphoglycerate dehydrogenase gene: genomic organization, chromosomal localization, and promoter analysis. Gene 334, 15–22 (2004)PubMedCrossRef J. Mitoma, S. Furuya, M. Shimizu, Y. Shinoda, K. Yoshida, N. Azuma, H. Tanaka, Y. Suzuki, Y. Hirabayashi, Mouse 3-phosphoglycerate dehydrogenase gene: genomic organization, chromosomal localization, and promoter analysis. Gene 334, 15–22 (2004)PubMedCrossRef
76.
Zurück zum Zitat M. Robbi, Y. Achouri, C. Szpirer, E. Van Schaftingen, The gene encoding rat 3-phosphoglycerate dehydrogenase. Mamm. Genome 11, 1034–1036 (2000)PubMedCrossRef M. Robbi, Y. Achouri, C. Szpirer, E. Van Schaftingen, The gene encoding rat 3-phosphoglycerate dehydrogenase. Mamm. Genome 11, 1034–1036 (2000)PubMedCrossRef
77.
Zurück zum Zitat S. Dey, Z. Hu, X.L. Xu, J.C. Sacchettini, G.A. Grant, D-3-Phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the Escherichia coli and mammalian enzymes. J. Biol. Chem. 280, 14884–14891 (2005)PubMedCrossRef S. Dey, Z. Hu, X.L. Xu, J.C. Sacchettini, G.A. Grant, D-3-Phosphoglycerate dehydrogenase from Mycobacterium tuberculosis is a link between the Escherichia coli and mammalian enzymes. J. Biol. Chem. 280, 14884–14891 (2005)PubMedCrossRef
78.
Zurück zum Zitat J.E. Unterlass, R.J. Wood, A. Baslé, J. Tucker, C. Cano, M.M.E. Noble, N.J. Curtin, Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH). Oncotarget 8, 104478–104491 (2017)PubMedPubMedCentralCrossRef J.E. Unterlass, R.J. Wood, A. Baslé, J. Tucker, C. Cano, M.M.E. Noble, N.J. Curtin, Structural insights into the enzymatic activity and potential substrate promiscuity of human 3-phosphoglycerate dehydrogenase (PHGDH). Oncotarget 8, 104478–104491 (2017)PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat S. Dey, G.A. Grant, J.C. Sacchettini, Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280, 14892–14899 (2005)PubMedCrossRef S. Dey, G.A. Grant, J.C. Sacchettini, Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem. 280, 14892–14899 (2005)PubMedCrossRef
80.
Zurück zum Zitat D.J. Schuller, G.A. Grant, L.J. Banaszak, The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2, 69–76 (1995)PubMedCrossRef D.J. Schuller, G.A. Grant, L.J. Banaszak, The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat. Struct. Biol. 2, 69–76 (1995)PubMedCrossRef
81.
Zurück zum Zitat V. Truong, S. Huang, J. Dennis, M. Lemire, N. Zwingerman, D. Aïssi, I. Kassam, C. Perret, P. Wells, P.E. Morange, M. Wilson, D.A. Trégouët, F. Gagnon, Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci. Rep. 7, 11207 (2017)PubMedPubMedCentralCrossRef V. Truong, S. Huang, J. Dennis, M. Lemire, N. Zwingerman, D. Aïssi, I. Kassam, C. Perret, P. Wells, P.E. Morange, M. Wilson, D.A. Trégouët, F. Gagnon, Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci. Rep. 7, 11207 (2017)PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat R. Shaheen, Z. Rahbeeni, A. Alhashem, E. Faqeih, Q. Zhao, Y. Xiong, A. Almoisheer, S.M. Al-Qattan, H.A. Almadani, N. Al-Onazi, B.S. Al-Baqawi, M.A. Saleh, F.S. Alkuraya, Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014)PubMedPubMedCentralCrossRef R. Shaheen, Z. Rahbeeni, A. Alhashem, E. Faqeih, Q. Zhao, Y. Xiong, A. Almoisheer, S.M. Al-Qattan, H.A. Almadani, N. Al-Onazi, B.S. Al-Baqawi, M.A. Saleh, F.S. Alkuraya, Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014)PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat D.J. Xiang, H.P. Yan, Q. Xin, F. Lu, X. Feng, Y. Zhao, Y. Liu, J.X. Yang, Cloning and expression of 3-phosphoglycerate dehydrogenase gene and its correlative antibodies in diagnosis of autoimmune hepatitis. Zhonghua Gan Zang Bing Za Zhi 17, 378–382 (2009)PubMed D.J. Xiang, H.P. Yan, Q. Xin, F. Lu, X. Feng, Y. Zhao, Y. Liu, J.X. Yang, Cloning and expression of 3-phosphoglycerate dehydrogenase gene and its correlative antibodies in diagnosis of autoimmune hepatitis. Zhonghua Gan Zang Bing Za Zhi 17, 378–382 (2009)PubMed
84.
Zurück zum Zitat J. Chen, F. Chung, G. Yang, M. Pu, H. Gao, W. Jiang, H. Yin, V. Capka, S. Kasibhatla, B. Laffitte, S. Jaeger, R. Pagliarini, Y. Chen, W. Zhou, Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 4, 2502–2511 (2013)PubMedPubMedCentralCrossRef J. Chen, F. Chung, G. Yang, M. Pu, H. Gao, W. Jiang, H. Yin, V. Capka, S. Kasibhatla, B. Laffitte, S. Jaeger, R. Pagliarini, Y. Chen, W. Zhou, Phosphoglycerate dehydrogenase is dispensable for breast tumor maintenance and growth. Oncotarget 4, 2502–2511 (2013)PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat R.B. Hamanaka, R. Nigdelioglu, A.Y. Meliton, Y. Tian, L.J. Witt, E. O’Leary, K.A. Sun, P.S. Woods, D. Wu, B. Ansbro, S. Ard, J.M. Rohde, N.O. Dulin, R.D. Guzy, G.M. Mutlu, Inhibition of phosphoglycerate dehydrogenase attenuates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58, 585–593 (2018)PubMedPubMedCentralCrossRef R.B. Hamanaka, R. Nigdelioglu, A.Y. Meliton, Y. Tian, L.J. Witt, E. O’Leary, K.A. Sun, P.S. Woods, D. Wu, B. Ansbro, S. Ard, J.M. Rohde, N.O. Dulin, R.D. Guzy, G.M. Mutlu, Inhibition of phosphoglycerate dehydrogenase attenuates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58, 585–593 (2018)PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat H. Yoshino, N. Nohata, K. Miyamoto, M. Yonemori, T. Sakaguchi, S. Sugita, T. Itesako, S. Kofuji, M. Nakagawa, R. Dahiya, H. Enokida, PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma. Cancer Res. 77, 6321–6329 (2017)PubMedPubMedCentralCrossRef H. Yoshino, N. Nohata, K. Miyamoto, M. Yonemori, T. Sakaguchi, S. Sugita, T. Itesako, S. Kofuji, M. Nakagawa, R. Dahiya, H. Enokida, PHGDH as a key enzyme for serine biosynthesis in HIF2α-targeting therapy for renal cell carcinoma. Cancer Res. 77, 6321–6329 (2017)PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat B. Zhang, A. Zheng, P. Hydbring, G. Ambroise, A.T. Ouchida, M. Goiny, H. Vakifahmetoglu-Norberg, E. Norberg, PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19, 2289–2303 (2017)PubMedCrossRef B. Zhang, A. Zheng, P. Hydbring, G. Ambroise, A.T. Ouchida, M. Goiny, H. Vakifahmetoglu-Norberg, E. Norberg, PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19, 2289–2303 (2017)PubMedCrossRef
88.
Zurück zum Zitat A.L. Engel, N.I. Lorenz, K. Klann, C. Münch, C. Depner, J.P. Steinbach, M.W. Ronellenfitsch, A.L. Luger, Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122(9), 1391–1398 (2020)PubMedPubMedCentralCrossRef A.L. Engel, N.I. Lorenz, K. Klann, C. Münch, C. Depner, J.P. Steinbach, M.W. Ronellenfitsch, A.L. Luger, Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122(9), 1391–1398 (2020)PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat X.Q. Jia, S. Zhang, H.J. Zhu, W. Wang, J.H. Zhu, X.D. Wang, J.F. Qiang, Increased expression of PHGDH and prognostic significance in colorectal cancer. Transl. Oncol. 9, 191–196 (2016)PubMedPubMedCentralCrossRef X.Q. Jia, S. Zhang, H.J. Zhu, W. Wang, J.H. Zhu, X.D. Wang, J.F. Qiang, Increased expression of PHGDH and prognostic significance in colorectal cancer. Transl. Oncol. 9, 191–196 (2016)PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat K. Snell, Y. Natsumeda, J.N. Eble, J.L. Glover, G. Weber, Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br. J. Cancer. 57, 87–90 (1988)PubMedPubMedCentralCrossRef K. Snell, Y. Natsumeda, J.N. Eble, J.L. Glover, G. Weber, Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br. J. Cancer. 57, 87–90 (1988)PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat S. Noh, D.H. Kim, W.H. Jung, J.S. Koo, Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol. 35, 4457–4468 (2014)PubMedCrossRef S. Noh, D.H. Kim, W.H. Jung, J.S. Koo, Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol. 35, 4457–4468 (2014)PubMedCrossRef
93.
Zurück zum Zitat X. Zhang, W. Bai, Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother. Pharmacol. 78, 655–659 (2016)PubMedCrossRef X. Zhang, W. Bai, Repression of phosphoglycerate dehydrogenase sensitizes triple-negative breast cancer to doxorubicin. Cancer Chemother. Pharmacol. 78, 655–659 (2016)PubMedCrossRef
94.
Zurück zum Zitat J. Fan, X. Teng, L. Liu, K.R. Mattaini, R.E. Looper, M.G. Vander Heiden, J.D. Rabinowitz, Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015)PubMedCrossRef J. Fan, X. Teng, L. Liu, K.R. Mattaini, R.E. Looper, M.G. Vander Heiden, J.D. Rabinowitz, Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem. Biol. 10, 510–516 (2015)PubMedCrossRef
95.
Zurück zum Zitat K.R. Mattaini, M.R. Sullivan, A.N. Lau, B.P. Fiske, R.T. Bronson, M.G. Vander Heiden, Increased PHGDH expression promotes aberrant melanin accumulation. BMC Cancer 19, 723 (2019)PubMedPubMedCentralCrossRef K.R. Mattaini, M.R. Sullivan, A.N. Lau, B.P. Fiske, R.T. Bronson, M.G. Vander Heiden, Increased PHGDH expression promotes aberrant melanin accumulation. BMC Cancer 19, 723 (2019)PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Y. Ou, S.J. Wang, L. Jiang, B. Zheng, W. Gu, p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015)PubMedCrossRef Y. Ou, S.J. Wang, L. Jiang, B. Zheng, W. Gu, p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015)PubMedCrossRef
97.
Zurück zum Zitat J. Liu, S. Guo, Q. Li, L. Yang, Z. Xia, L. Zhang, Z. Huang, N. Zhang, Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J. Neurooncol. 111, 245–255 (2013)PubMedCrossRef J. Liu, S. Guo, Q. Li, L. Yang, Z. Xia, L. Zhang, Z. Huang, N. Zhang, Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1. J. Neurooncol. 111, 245–255 (2013)PubMedCrossRef
98.
Zurück zum Zitat Z. Jing, W. Heng, D. Aiping, Q. Yafei, Z. Shulan, Expression and clinical significance of phosphoglycerate dehydrogenase and squamous cell carcinoma antigen in cervical cancer. Int. J. Gynecol. Cancer 23, 1465–1469 (2013)PubMedCrossRef Z. Jing, W. Heng, D. Aiping, Q. Yafei, Z. Shulan, Expression and clinical significance of phosphoglycerate dehydrogenase and squamous cell carcinoma antigen in cervical cancer. Int. J. Gynecol. Cancer 23, 1465–1469 (2013)PubMedCrossRef
99.
Zurück zum Zitat Z. Jing, W. Heng, L. Xia, W. Ning, Q. Yafei, Z. Yao, Z. Shulan, Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biol. Ther. 16, 541–548 (2015)PubMedPubMedCentralCrossRef Z. Jing, W. Heng, L. Xia, W. Ning, Q. Yafei, Z. Yao, Z. Shulan, Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biol. Ther. 16, 541–548 (2015)PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat J. Zhu, J. Ma, X. Wang, T. Ma, S. Zhang, W. Wang, X. Zhou, J. Shi, High Expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016)PubMedPubMedCentralCrossRef J. Zhu, J. Ma, X. Wang, T. Ma, S. Zhang, W. Wang, X. Zhou, J. Shi, High Expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016)PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat X. Ma, B. Li, J. Liu, Y. Fu, Y. Luo, Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res. 38, 66 (2019) X. Ma, B. Li, J. Liu, Y. Fu, Y. Luo, Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E. J. Exp. Clin. Cancer Res. 38, 66 (2019)
102.
Zurück zum Zitat Z. Song, C. Feng, Y. Lu, Y. Lin, C. Dong, PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43–50 (2018)PubMedCrossRef Z. Song, C. Feng, Y. Lu, Y. Lin, C. Dong, PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer. Gene 642, 43–50 (2018)PubMedCrossRef
103.
Zurück zum Zitat Y. Xian, S. Zhang, X. Wang, J. Qin, W. Wang, H. Wu, Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. Onco. Targets Ther. 9, 5553–5560 (2016)PubMedPubMedCentralCrossRef Y. Xian, S. Zhang, X. Wang, J. Qin, W. Wang, H. Wu, Phosphoglycerate dehydrogenase is a novel predictor for poor prognosis in gastric cancer. Onco. Targets Ther. 9, 5553–5560 (2016)PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat A. Fenner, Kidney cancer: PHGDH is key for targeting HIF in RCC. Nat. Rev. Urol. 14, 702 (2017)PubMedCrossRef A. Fenner, Kidney cancer: PHGDH is key for targeting HIF in RCC. Nat. Rev. Urol. 14, 702 (2017)PubMedCrossRef
105.
Zurück zum Zitat Y. Ye, Y. Zhou, L. Zhang, Y. Chen, X. Lyu, L. Cai, Y. Lu, Y. Deng, J. Wang, K. Yao, W. Fang, H. Cai, X. Li, EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 436, 19–24 (2013)PubMedCrossRef Y. Ye, Y. Zhou, L. Zhang, Y. Chen, X. Lyu, L. Cai, Y. Lu, Y. Deng, J. Wang, K. Yao, W. Fang, H. Cai, X. Li, EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 436, 19–24 (2013)PubMedCrossRef
106.
Zurück zum Zitat W.Y. Sun, H.M. Kim, W.H. Jung, J.S. Koo, Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J. Transl. Med. 14, 168 (2016)PubMedPubMedCentralCrossRef W.Y. Sun, H.M. Kim, W.H. Jung, J.S. Koo, Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J. Transl. Med. 14, 168 (2016)PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat J. Wang, H. Ni, L. Chen, Y.X. Liu, C.B. Chen, W.Q. Song, Preparation and analysis of cSNP chip on hepatocellular carcinoma-related genes. HBPD Int. 4, 398–402 (2005)PubMed J. Wang, H. Ni, L. Chen, Y.X. Liu, C.B. Chen, W.Q. Song, Preparation and analysis of cSNP chip on hepatocellular carcinoma-related genes. HBPD Int. 4, 398–402 (2005)PubMed
108.
Zurück zum Zitat L. Wei, D. Lee, C.T. Law, M.S. Zhang, J. Shen, D.W. Chin, A. Zhang, F.H. Tsang, C.L. Wong, I.O. Ng, C.C. Wong, C.M. Wong, Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun. 10, 4681 (2019)PubMedPubMedCentralCrossRef L. Wei, D. Lee, C.T. Law, M.S. Zhang, J. Shen, D.W. Chin, A. Zhang, F.H. Tsang, C.L. Wong, I.O. Ng, C.C. Wong, C.M. Wong, Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun. 10, 4681 (2019)PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat J.K. Dong, H.M. Lei, Q. Liang, Y.B. Tang, Y. Zhou, Y. Wang, S. Zhang, W.B. Li, Y. Tong, G. Zhuang, L. Zhang, H.Z. Chen, L. Zhu, Y. Shen, Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase. Theranostics 8, 1808–1823 (2018)PubMedPubMedCentralCrossRef J.K. Dong, H.M. Lei, Q. Liang, Y.B. Tang, Y. Zhou, Y. Wang, S. Zhang, W.B. Li, Y. Tong, G. Zhuang, L. Zhang, H.Z. Chen, L. Zhu, Y. Shen, Overcoming erlotinib resistance in EGFR mutation-positive lung adenocarcinomas through repression of phosphoglycerate dehydrogenase. Theranostics 8, 1808–1823 (2018)PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat S. Yoon, J.G. Kim, A.N. Seo, S.Y. Park, H.J. Kim, J.S. Park, G.S. Choi, J.Y. Jeong, Y. Jun do, G.S. Yoon, B.W. Kang, Clinical implication of serine metabolism-associated enzymes in colon cancer. Oncology 89, 351–359 (2015) S. Yoon, J.G. Kim, A.N. Seo, S.Y. Park, H.J. Kim, J.S. Park, G.S. Choi, J.Y. Jeong, Y. Jun do, G.S. Yoon, B.W. Kang, Clinical implication of serine metabolism-associated enzymes in colon cancer. Oncology 89, 351–359 (2015)
111.
Zurück zum Zitat F. Polet, C. Corbet, A. Pinto, L.I. Rubio, R. Martherus, V. Bol, X. Drozak, V. Grégoire, O. Riant, O. Feron, Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget 7, 1765–1776 (2016)PubMedCrossRef F. Polet, C. Corbet, A. Pinto, L.I. Rubio, R. Martherus, V. Bol, X. Drozak, V. Grégoire, O. Riant, O. Feron, Reducing the serine availability complements the inhibition of the glutamine metabolism to block leukemia cell growth. Oncotarget 7, 1765–1776 (2016)PubMedCrossRef
112.
Zurück zum Zitat X. Wu, J. Xia, J. Zhang, Y. Zhu, Y. Wu, J. Guo, S. Chen, Q. Lei, B. Meng, C. Kuang, X. Feng, Y. He, Y. Shen, X. Li, L. Qiu, G. Li, W. Zhou, Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. Br. J. Haematol. 190, 52–66 (2020)PubMedCrossRef X. Wu, J. Xia, J. Zhang, Y. Zhu, Y. Wu, J. Guo, S. Chen, Q. Lei, B. Meng, C. Kuang, X. Feng, Y. He, Y. Shen, X. Li, L. Qiu, G. Li, W. Zhou, Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. Br. J. Haematol. 190, 52–66 (2020)PubMedCrossRef
113.
Zurück zum Zitat A. Palermo, M. Fosca, G. Tabacco, F. Marini, V. Graziani, M.C. Santarsia, F. Longo, A. Lauria, R. Cesareo, I. Giovannoni, C. Taffon, M. Rocchia, S. Manfrini, P. Crucitti, P. Pozzilli, A. Crescenzi, J.V. Rau, Raman spectroscopy applied to parathyroid tissues: a new diagnostic tool to discriminate normal tissue from adenoma. Anal. Chem. 90(1), 847–854 (2018)PubMedCrossRef A. Palermo, M. Fosca, G. Tabacco, F. Marini, V. Graziani, M.C. Santarsia, F. Longo, A. Lauria, R. Cesareo, I. Giovannoni, C. Taffon, M. Rocchia, S. Manfrini, P. Crucitti, P. Pozzilli, A. Crescenzi, J.V. Rau, Raman spectroscopy applied to parathyroid tissues: a new diagnostic tool to discriminate normal tissue from adenoma. Anal. Chem. 90(1), 847–854 (2018)PubMedCrossRef
114.
Zurück zum Zitat A. di Masi, L. Leboffe, A. Sodo, G. Tabacco, R. Cesareo, M. Sbroscia, I. Giovannoni, C. Taffon, P. Crucitti, F. Longo, S. Manfrini, M.A. Ricci, P. Ascenzi, A. Crescenzi, A. Palermo, Metabolic profile of human parathyroid adenoma. Endocrine 67(3), 699–707 (2020)PubMedCrossRef A. di Masi, L. Leboffe, A. Sodo, G. Tabacco, R. Cesareo, M. Sbroscia, I. Giovannoni, C. Taffon, P. Crucitti, F. Longo, S. Manfrini, M.A. Ricci, P. Ascenzi, A. Crescenzi, A. Palermo, Metabolic profile of human parathyroid adenoma. Endocrine 67(3), 699–707 (2020)PubMedCrossRef
115.
Zurück zum Zitat I. Gromova, P. Gromov, N. Honma, S. Kumar, D. Rimm, M.L. Talman, V.T. Wielenga, J.M. Moreira, High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol. Oncol. 9, 1636–1654 (2015)PubMedPubMedCentralCrossRef I. Gromova, P. Gromov, N. Honma, S. Kumar, D. Rimm, M.L. Talman, V.T. Wielenga, J.M. Moreira, High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol. Oncol. 9, 1636–1654 (2015)PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat E. Mullarky, N.C. Lucki, R. Beheshti Zavareh, J.L. Anglin, A.P. Gomes, B.N. Nicolay, J.C. Wong, S. Christen, H. Takahashi, P.K. Singh, J. Blenis, J.D. Warren, S.M. Fendt, J.M. Asara, G.M. DeNicola, C.A. Lyssiotis, L.L. Lairson, L.C. Cantley, Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U. S. A. 113, 1778–1783 (2016) E. Mullarky, N.C. Lucki, R. Beheshti Zavareh, J.L. Anglin, A.P. Gomes, B.N. Nicolay, J.C. Wong, S. Christen, H. Takahashi, P.K. Singh, J. Blenis, J.D. Warren, S.M. Fendt, J.M. Asara, G.M. DeNicola, C.A. Lyssiotis, L.L. Lairson, L.C. Cantley, Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U. S. A. 113, 1778–1783 (2016)
117.
Zurück zum Zitat M.E. Pacold, K.R. Brimacombe, S.H. Chan, J.M. Rohde, C.A. Lewis, L.J. Swier, R. Possemato, W.W. Chen, L.B. Sullivan, B.P. Fiske, S. Cho, E. Freinkman, K. Birsoy, M. Abu-Remaileh, Y.D. Shaul, C.M. Liu, M. Zhou, M.J. Koh, H. Chung, S.M. Davidson, A. Luengo, A.Q. Wang, X. Xu, A. Yasgar, L. Liu, G. Rai, K.D. Westover, M.G. Vander Heiden, M. Shen, N.S. Gray, M.B. Boxer, D.M. Sabatini, A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016)PubMedPubMedCentralCrossRef M.E. Pacold, K.R. Brimacombe, S.H. Chan, J.M. Rohde, C.A. Lewis, L.J. Swier, R. Possemato, W.W. Chen, L.B. Sullivan, B.P. Fiske, S. Cho, E. Freinkman, K. Birsoy, M. Abu-Remaileh, Y.D. Shaul, C.M. Liu, M. Zhou, M.J. Koh, H. Chung, S.M. Davidson, A. Luengo, A.Q. Wang, X. Xu, A. Yasgar, L. Liu, G. Rai, K.D. Westover, M.G. Vander Heiden, M. Shen, N.S. Gray, M.B. Boxer, D.M. Sabatini, A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016)PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat J.M. Rohde, K.R. Brimacombe, L. Liu, M.E. Pacold, A. Yasgar, D.M. Cheff, T.D. Lee, G. Rai, B. Baljinnyam, Z. Li, A. Simeonov, M.D. Hall, M. Shen, D.M. Sabatini, M.B. Boxer, Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorg. Med. Chem. 26, 1727–1739 (2018)PubMedPubMedCentralCrossRef J.M. Rohde, K.R. Brimacombe, L. Liu, M.E. Pacold, A. Yasgar, D.M. Cheff, T.D. Lee, G. Rai, B. Baljinnyam, Z. Li, A. Simeonov, M.D. Hall, M. Shen, D.M. Sabatini, M.B. Boxer, Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorg. Med. Chem. 26, 1727–1739 (2018)PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat J.E. Unterlass, A. Baslé, T.J. Blackburn, J. Tucker, C. Cano, M.E.M. Noble, N.J. Curtin, Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget 9, 13139–13153 (2018)PubMedCrossRef J.E. Unterlass, A. Baslé, T.J. Blackburn, J. Tucker, C. Cano, M.E.M. Noble, N.J. Curtin, Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Oncotarget 9, 13139–13153 (2018)PubMedCrossRef
120.
Zurück zum Zitat The 5th RSC-BMCS fragment-based drug discovery meeting at Churchill College, Cambridge (UK) (2015) The 5th RSC-BMCS fragment-based drug discovery meeting at Churchill College, Cambridge (UK) (2015)
121.
Zurück zum Zitat N. Fuller, L. Spadola, S. Cowen, J. Patel, H. Schönherr, Q. Cao, A. McKenzie, F. Edfeldt, A. Rabow, R. Goodnow, An improved model for fragment-based lead generation at AstraZeneca. Drug Discov. Today 21, 1272–1283 (2016)PubMedCrossRef N. Fuller, L. Spadola, S. Cowen, J. Patel, H. Schönherr, Q. Cao, A. McKenzie, F. Edfeldt, A. Rabow, R. Goodnow, An improved model for fragment-based lead generation at AstraZeneca. Drug Discov. Today 21, 1272–1283 (2016)PubMedCrossRef
122.
Zurück zum Zitat S. Ravez, C. Corbet, Q. Spillier, A. Dutu, A.D. Robin, E. Mullarky, L.C. Cantley, O. Feron, R. Frédérick, α-Ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH). J. Med. Chem. 60, 1591–1597 (2017)PubMedPubMedCentralCrossRef S. Ravez, C. Corbet, Q. Spillier, A. Dutu, A.D. Robin, E. Mullarky, L.C. Cantley, O. Feron, R. Frédérick, α-Ketothioamide derivatives: a promising tool to interrogate phosphoglycerate dehydrogenase (PHGDH). J. Med. Chem. 60, 1591–1597 (2017)PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Q. Wang, M.V. Liberti, P. Liu, X. Deng, Y. Liu, J.W. Locasale, L. Lai, Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017)PubMedCrossRef Q. Wang, M.V. Liberti, P. Liu, X. Deng, Y. Liu, J.W. Locasale, L. Lai, Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017)PubMedCrossRef
124.
Zurück zum Zitat J. Guo, X. Gu, M. Zheng, Y. Zhang, L. Chen, H. Li, Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg. Chem. 87, 16–22 (2019)PubMedCrossRef J. Guo, X. Gu, M. Zheng, Y. Zhang, L. Chen, H. Li, Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg. Chem. 87, 16–22 (2019)PubMedCrossRef
125.
Zurück zum Zitat M. Zheng, J. Guo, J. Xu, K. Yang, R. Tang, X. Gu, H. Li, L. Chen, Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct. 10(6), 3386–3395 (2019)PubMedCrossRef M. Zheng, J. Guo, J. Xu, K. Yang, R. Tang, X. Gu, H. Li, L. Chen, Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct. 10(6), 3386–3395 (2019)PubMedCrossRef
126.
Zurück zum Zitat D. González-Mendoza, D. Ascencio-Martinez, A.H. Poox, V. Mendez-Trujillo, O. Grimaldo-Juarez, J.F.S. Hernández, L.C. Diaz, S.M.A. Marin, Phenolic compounds and physiochemical analysis of Physalis ixocarpa genotypes. Sci. Res. Essays 6, 3808–3814 (2011)CrossRef D. González-Mendoza, D. Ascencio-Martinez, A.H. Poox, V. Mendez-Trujillo, O. Grimaldo-Juarez, J.F.S. Hernández, L.C. Diaz, S.M.A. Marin, Phenolic compounds and physiochemical analysis of Physalis ixocarpa genotypes. Sci. Res. Essays 6, 3808–3814 (2011)CrossRef
127.
Zurück zum Zitat E. Mullarky, J. Xu, A.D. Robin, D.J. Huggins, A. Jennings, N. Noguchi, A. Olland, D. Lakshminarasimhan, M. Miller, D. Tomita, M. Michino, T. Su, G. Zhang, A.W. Stamford, P.T. Meinke, S. Kargman, L.C. Cantley, Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg. Med. Chem. Lett. 29, 2503–2510 (2019)PubMedPubMedCentralCrossRef E. Mullarky, J. Xu, A.D. Robin, D.J. Huggins, A. Jennings, N. Noguchi, A. Olland, D. Lakshminarasimhan, M. Miller, D. Tomita, M. Michino, T. Su, G. Zhang, A.W. Stamford, P.T. Meinke, S. Kargman, L.C. Cantley, Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg. Med. Chem. Lett. 29, 2503–2510 (2019)PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat H. Weinstabl, M. Treu, J. Rinnenthal, S.K. Zahn, P. Ettmayer, G. Bader, G. Dahmann, D. Kessler, K. Rumpel, N. Mischerikow, F. Savarese, T. Gerstberger, M. Mayer, A. Zoephel, R. Schnitzer, W. Sommergruber, P. Martinelli, H. Arnhof, B. Peric-Simov, K.S. Hofbauer, G. Garavel, Y. Scherbantin, S. Mitzner, T.N. Fett, G. Scholz, J. Bruchhaus, M. Burkard, R. Kousek, T. Ciftci, B. Sharps, A. Schrenk, C. Harrer, D. Haering, B. Wolkerstorfer, X. Zhang, X. Lv, A. Du, D. Li, Y. Li, J. Quant, M. Pearson, D.B. McConnell, Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997 (2019)PubMedCrossRef H. Weinstabl, M. Treu, J. Rinnenthal, S.K. Zahn, P. Ettmayer, G. Bader, G. Dahmann, D. Kessler, K. Rumpel, N. Mischerikow, F. Savarese, T. Gerstberger, M. Mayer, A. Zoephel, R. Schnitzer, W. Sommergruber, P. Martinelli, H. Arnhof, B. Peric-Simov, K.S. Hofbauer, G. Garavel, Y. Scherbantin, S. Mitzner, T.N. Fett, G. Scholz, J. Bruchhaus, M. Burkard, R. Kousek, T. Ciftci, B. Sharps, A. Schrenk, C. Harrer, D. Haering, B. Wolkerstorfer, X. Zhang, X. Lv, A. Du, D. Li, Y. Li, J. Quant, M. Pearson, D.B. McConnell, Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997 (2019)PubMedCrossRef
129.
Zurück zum Zitat E. Saiah, 3-phosphoglycerate dehydrogenase inhibitors and uses thereof. Patents. (2016) E. Saiah, 3-phosphoglycerate dehydrogenase inhibitors and uses thereof. Patents. (2016)
130.
Zurück zum Zitat Q. Spillier, D. Vertommen, S. Ravez, R. Marteau, Q. Thémans, C. Corbet, O. Feron, J. Wouters, R. Frédérick, Anti-alcohol abuse drug disulfiram inhibits human PHGDH via disruption of its active tetrameric form through a specific cysteine oxidation. Sci. Rep. 9, 4737 (2019)PubMedPubMedCentralCrossRef Q. Spillier, D. Vertommen, S. Ravez, R. Marteau, Q. Thémans, C. Corbet, O. Feron, J. Wouters, R. Frédérick, Anti-alcohol abuse drug disulfiram inhibits human PHGDH via disruption of its active tetrameric form through a specific cysteine oxidation. Sci. Rep. 9, 4737 (2019)PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Y. Kang, J.B. Fleming, N. Bardeesy, J.M. Asara, M.C. Haigis, R.A. DePinho, L.C. Cantley, A.C. Kimmelman, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)PubMedPubMedCentralCrossRef J. Son, C.A. Lyssiotis, H. Ying, X. Wang, S. Hua, M. Ligorio, R.M. Perera, C.R. Ferrone, E. Mullarky, N. Shyh-Chang, Y. Kang, J.B. Fleming, N. Bardeesy, J.M. Asara, M.C. Haigis, R.A. DePinho, L.C. Cantley, A.C. Kimmelman, Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat E.A. Zaal, W. Wu, G. Jansen, S. Zweegman, J. Cloos, C.R. Berkers, Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab. 5, 7 (2017)PubMedPubMedCentralCrossRef E.A. Zaal, W. Wu, G. Jansen, S. Zweegman, J. Cloos, C.R. Berkers, Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab. 5, 7 (2017)PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat C.K. Zogg, Phosphoglycerate dehydrogenase: potential therapeutic target and putative metabolic oncogene. J. Oncol. 2014, 524101 (2014) C.K. Zogg, Phosphoglycerate dehydrogenase: potential therapeutic target and putative metabolic oncogene. J. Oncol. 2014, 524101 (2014)
134.
Zurück zum Zitat M.A. Reid, A.E. Allen, S. Liu, M.V. Liberti, P. Liu, X. Liu, Z. Dai, X. Gao, Q. Wang, Y. Liu, L. Lai, J.W. Locasale, Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat. Commun. 9, 5442 (2018)PubMedPubMedCentralCrossRef M.A. Reid, A.E. Allen, S. Liu, M.V. Liberti, P. Liu, X. Liu, Z. Dai, X. Gao, Q. Wang, Y. Liu, L. Lai, J.W. Locasale, Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat. Commun. 9, 5442 (2018)PubMedPubMedCentralCrossRef
Metadaten
Titel
3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment
verfasst von
Mingxue Li
Canrong Wu
Yueying Yang
Mengzhu Zheng
Silin Yu
Jinhui Wang
Lixia Chen
Hua Li
Publikationsdatum
18.03.2021
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 3/2021
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-021-00599-9

Neu im Fachgebiet Pathologie

Overview of a comparative analysis of microsatellite instability and standard mismatch repair protein-deficiency tests in a large cancer cohort

  • Hauptreferate: Hauptprogramm der DGP

A retrospective analysis was carried out based on a large cancer patient cohort of our institute ( n  = 1306; collected from 2018 to 2023). dMMR was tested by four IHC reactions (MLH1 and PMS2 or MSH2 and MSH 6). Further, parallel pentaplex …

Molekulare Testung bei mesenchymalen Neoplasien: Was, wann und wie testen?

Mit dem weit verbreiteten Einsatz diverser molekularer Methoden in der histopathologischen Routinediagnostik hat die Tumorklassifikation in den letzten beiden Jahrzehnten signifikante Fortschritte gemacht. Dabei wurden zum einen zahlreiche …

Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms

  • Hauptreferate: Hauptprogramm der DGP

Artificial intelligence (AI) has recently been applied to pathological and medical image analysis with high sensitivity and specificity [ 1 , 2 ], aiding in various dental diagnostic techniques. The use of AI in image annotation has enhanced the …

Key considerations when implementing new diagnostic technologies in routine practice

  • Hauptreferate: Arbeitsgemeinschaften der DGP

This review explores several key considerations that are critical for implementing new diagnostic technologies into routine practice. These elements will provide a comprehensive guide for navigating the complexities of integrating cutting-edge …