Skip to main content
Erschienen in: Pediatric Cardiology 1/2021

20.10.2020 | Original Article

3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease

verfasst von: K. L. Mowers, J. B. Fullerton, D. Hicks, G. K. Singh, M. C. Johnson, S. Anwar

Erschienen in: Pediatric Cardiology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Cardiac 3D printing is mainly performed from magnetic resonance imaging (MRI) and computed tomography (CT) 3D datasets, though anatomic detail of atrioventricular (AV) valves may be limited. 3D echo provides excellent visualization of AV valves. Thus, we tested the feasibility and accuracy of 3D printing from 3D echo in this pilot series of subjects with congenital heart disease (CHD), with a focus on valve anatomy. Five subjects with CHD were identified. 3D echo data were converted to 3D printable files and printed in collaboration with 3D Systems Healthcare (Golden, Colorado). A novel technique for valve modeling was utilized using commercially available software. Two readers (KM, SA) independently measured valve structures from 3D models and compared to source echo images. 3D printing was feasible for all cases. Table 1 shows measurements comparing 2D echo to 3D models. Bland Altman analysis showed close agreement and no significant bias between 2D and digital 3D models (mean difference 0.0, 95% CI 1.1 to − 1.1) or 2D vs printed 3D models, though with wider limits of agreement (mean difference − 0.3, 95% CI 1.9 to − 2.6). Accuracy of 3D models compared to 2D was within < 0.5 mm. This pilot study shows 3D echo datasets can be used to reliably print AV and semilunar valve structures in CHD. The 3D models are highly accurate compared to the source echo images. This is a novel and value-added technique that adds incremental information on cardiac anatomy over current methods.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC et al (2008) Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136(4):1098–1099CrossRef Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC et al (2008) Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136(4):1098–1099CrossRef
2.
Zurück zum Zitat Olivieri LJ, Krieger A, Loke Y-H, Nath DS, Kim PCW, Sable CA (2015) Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. JASE 28(4):392–397 Olivieri LJ, Krieger A, Loke Y-H, Nath DS, Kim PCW, Sable CA (2015) Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. JASE 28(4):392–397
3.
Zurück zum Zitat Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O et al (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2):185–190CrossRef Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O et al (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2):185–190CrossRef
4.
Zurück zum Zitat Farooqi KM, Uppu SC, Nguyen K, Srivastava S, Ko HH, Choueiter N et al (2015) Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 37(1):90–98CrossRef Farooqi KM, Uppu SC, Nguyen K, Srivastava S, Ko HH, Choueiter N et al (2015) Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle. Pediatr Cardiol. 37(1):90–98CrossRef
5.
Zurück zum Zitat Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT et al (2016) 3D Printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail 4(4):301–311CrossRef Farooqi KM, Saeed O, Zaidi A, Sanz J, Nielsen JC, Hsu DT et al (2016) 3D Printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail 4(4):301–311CrossRef
6.
Zurück zum Zitat Yoo S-J, Thabit O, Kim EK, Ide H, Yim D, Dragulescu A et al (2016) 3D printing in medicine of congenital heart diseases. 3D Print Med 2(1):1–12CrossRef Yoo S-J, Thabit O, Kim EK, Ide H, Yim D, Dragulescu A et al (2016) 3D printing in medicine of congenital heart diseases. 3D Print Med 2(1):1–12CrossRef
7.
Zurück zum Zitat Anwar S, Singh GK, Varughese J, Nguyen H, Billadello JJ, Sheybani EF et al (2017) 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc Imaging 10(8):953–956CrossRef Anwar S, Singh GK, Varughese J, Nguyen H, Billadello JJ, Sheybani EF et al (2017) 3D printing in complex congenital heart disease: across a spectrum of age, pathology, and imaging techniques. JACC Cardiovasc Imaging 10(8):953–956CrossRef
8.
Zurück zum Zitat Vukicevic M, Mosadegh B, Min JK, Little SH (2017) Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 10(2):171–184CrossRef Vukicevic M, Mosadegh B, Min JK, Little SH (2017) Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 10(2):171–184CrossRef
9.
Zurück zum Zitat Anwar S, Singh GK, Petrucci O, Eghtesady P, Woodard PK, Billadello JJ (2017) Adult congenital heart disease. In: Farooqi KM (ed) Rapid prototyping in cardiac disease. Springer, New York, pp 99–109CrossRef Anwar S, Singh GK, Petrucci O, Eghtesady P, Woodard PK, Billadello JJ (2017) Adult congenital heart disease. In: Farooqi KM (ed) Rapid prototyping in cardiac disease. Springer, New York, pp 99–109CrossRef
10.
Zurück zum Zitat Yoo S-J, Spray T, Austin EH, Yun T-J, Van Arsdell GS (2017) Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153(6):1530–1540CrossRef Yoo S-J, Spray T, Austin EH, Yun T-J, Van Arsdell GS (2017) Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 153(6):1530–1540CrossRef
11.
Zurück zum Zitat Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ et al (2018) 3D printing is a transformative technology in congenital heart disease. JACC Basic Transl Sci 3(2):294–312CrossRef Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ et al (2018) 3D printing is a transformative technology in congenital heart disease. JACC Basic Transl Sci 3(2):294–312CrossRef
12.
Zurück zum Zitat Writing Committee Members, Hirshfeld JW, Ferrari VA, Bengel FM, Bergersen L, Chambers CE et al (2018) 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol 71(24):e283–e351CrossRef Writing Committee Members, Hirshfeld JW, Ferrari VA, Bengel FM, Bergersen L, Chambers CE et al (2018) 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol 71(24):e283–e351CrossRef
13.
Zurück zum Zitat Babu-Narayan SV, Giannakoulas G, Valente AM, Li W, Gatzoulis MA (2016) Imaging of congenital heart disease in adults. Eur Heart J 37(15):1182–1195CrossRef Babu-Narayan SV, Giannakoulas G, Valente AM, Li W, Gatzoulis MA (2016) Imaging of congenital heart disease in adults. Eur Heart J 37(15):1182–1195CrossRef
14.
Zurück zum Zitat Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM et al (2014) Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 27(2):111–141CrossRef Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM et al (2014) Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 27(2):111–141CrossRef
15.
Zurück zum Zitat Prakash A, Powell AJ, Geva T (2010) Multimodality noninvasive imaging for assessment of congenital heart disease. Circul Cardiovasc Imaging 3(1):112–125CrossRef Prakash A, Powell AJ, Geva T (2010) Multimodality noninvasive imaging for assessment of congenital heart disease. Circul Cardiovasc Imaging 3(1):112–125CrossRef
16.
Zurück zum Zitat Mashari A, Montealegre-Gallegos M, Knio Z, Yeh L, Jeganathan J, Matyal R et al (2016) Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data. Echo Res Pract 3(4):R57–R64CrossRef Mashari A, Montealegre-Gallegos M, Knio Z, Yeh L, Jeganathan J, Matyal R et al (2016) Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data. Echo Res Pract 3(4):R57–R64CrossRef
17.
Zurück zum Zitat Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R et al (2015) Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging 8(2):227–229CrossRef Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R et al (2015) Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging 8(2):227–229CrossRef
18.
Zurück zum Zitat Kapur KK, Garg N (2014) Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth 17(4):283–284PubMed Kapur KK, Garg N (2014) Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth 17(4):283–284PubMed
19.
Zurück zum Zitat Witschey WRT, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM et al (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98(2):691–694CrossRef Witschey WRT, Pouch AM, McGarvey JR, Ikeuchi K, Contijoch F, Levack MM et al (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98(2):691–694CrossRef
20.
Zurück zum Zitat Muraru D, Veronesi F, Maddalozzo A, Dequal D, Frajhof L, Rabischoffsky A et al (2017) 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging 18(7):802–808CrossRef Muraru D, Veronesi F, Maddalozzo A, Dequal D, Frajhof L, Rabischoffsky A et al (2017) 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging 18(7):802–808CrossRef
21.
Zurück zum Zitat Premyodhin N, Mandair D, Ferng AS, Leach TS, Palsma RP, Albanna MZ et al (2018) 3D printed mitral valve models: affordable simulation for robotic mitral valve repair. Interact Cardiovasc Thorac Surg 26(1):71–76CrossRef Premyodhin N, Mandair D, Ferng AS, Leach TS, Palsma RP, Albanna MZ et al (2018) 3D printed mitral valve models: affordable simulation for robotic mitral valve repair. Interact Cardiovasc Thorac Surg 26(1):71–76CrossRef
22.
Zurück zum Zitat Scanlan AB, Nguyen AV, Ilina A, Lasso A, Cripe L, Jegatheeswaran A et al (2018) Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 39(3):538–547CrossRef Scanlan AB, Nguyen AV, Ilina A, Lasso A, Cripe L, Jegatheeswaran A et al (2018) Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 39(3):538–547CrossRef
23.
Zurück zum Zitat Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH (2016) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45(2):508–519CrossRef Vukicevic M, Puperi DS, Jane Grande-Allen K, Little SH (2016) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45(2):508–519CrossRef
24.
Zurück zum Zitat Harb SC, Rodriguez LL, Vukicevic M, Kapadia SR, Little SH (2019) Three-dimensional printing applications in percutaneous structural heart interventions. Circul Cardiovasc Imaging 12(10):e009014CrossRef Harb SC, Rodriguez LL, Vukicevic M, Kapadia SR, Little SH (2019) Three-dimensional printing applications in percutaneous structural heart interventions. Circul Cardiovasc Imaging 12(10):e009014CrossRef
25.
Zurück zum Zitat Naoum C, Blanke P, Cavalcante JL, Leipsic J (2017) Cardiac computed tomography and magnetic resonance imaging in the evaluation of mitral and tricuspid valve disease: implications for transcatheter interventions. Circul Cardiovasc Imaging 10(3):TC06 Naoum C, Blanke P, Cavalcante JL, Leipsic J (2017) Cardiac computed tomography and magnetic resonance imaging in the evaluation of mitral and tricuspid valve disease: implications for transcatheter interventions. Circul Cardiovasc Imaging 10(3):TC06
26.
Zurück zum Zitat Rajiah P, Moore A, Saboo S, Goerne H, Ranganath P, MacNamara J et al (2019) Multimodality imaging of complications of cardiac valve surgeries. RadioGraphics 39(4):932–956CrossRef Rajiah P, Moore A, Saboo S, Goerne H, Ranganath P, MacNamara J et al (2019) Multimodality imaging of complications of cardiac valve surgeries. RadioGraphics 39(4):932–956CrossRef
27.
Zurück zum Zitat Wunderlich NC, Beigel R, Ho SY, Nietlispach F, Cheng R, Agricola E et al (2018) Imaging for mitral interventions: methods and efficacy. JACC Cardiovasc Imaging 11(6):872–901CrossRef Wunderlich NC, Beigel R, Ho SY, Nietlispach F, Cheng R, Agricola E et al (2018) Imaging for mitral interventions: methods and efficacy. JACC Cardiovasc Imaging 11(6):872–901CrossRef
28.
Zurück zum Zitat Cohen MS, Eidem BW, Cetta F, Fogel MA, Frommelt PC, Ganame J et al (2016) Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 29:571–621CrossRef Cohen MS, Eidem BW, Cetta F, Fogel MA, Frommelt PC, Ganame J et al (2016) Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 29:571–621CrossRef
Metadaten
Titel
3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease
verfasst von
K. L. Mowers
J. B. Fullerton
D. Hicks
G. K. Singh
M. C. Johnson
S. Anwar
Publikationsdatum
20.10.2020
Verlag
Springer US
Erschienen in
Pediatric Cardiology / Ausgabe 1/2021
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-020-02462-4

Weitere Artikel der Ausgabe 1/2021

Pediatric Cardiology 1/2021 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.