Skip to main content
Erschienen in: medizinische genetik 4/2008

01.12.2008 | Schwerpunkt

3D-Fluoreszenz-in-situ-Hybridisierung und Zellkernarchitektur

verfasst von: Dr. M. Cremer, S. Müller, I. Solovei, T. Cremer

Erschienen in: medizinische genetik | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Zusammenfassung

Fluoreszenz-in-situ-Hybridisierung an dreidimensional konservierten Zellkernen (3D-FISH) ist eine effiziente Methode für Untersuchungen zur 3D-Anordnung von Chromatin im Zellkern. Die Zellkernarchitektur stellt eine Ebene epigenetischer Mechanismen der Genregulation dar. 3D-FISH-Untersuchungen belegten eine große Variabilität in den Nachbarschaftsbeziehungen individueller Chromosomenterritorien im Zellkern. Im Gegensatz hierzu konnte eine distinkte radiale, von der Gendichte abhängige Anordnung von Chromatin gezeigt werden, die evolutionär hochkonserviert ist. Genreiches Material ist bevorzugt in der Kernmitte, genarmes in der Kernperipherie angeordnet. Die Frage einer räumlichen Assoziation kotranskriptionell exprimierter Gene (so genannte „expression hubs”) wird derzeit kontrovers diskutiert.
Literatur
1.
Zurück zum Zitat Albiez H, Cremer M, Tiberi C et al. (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14: 707–733PubMedCrossRef Albiez H, Cremer M, Tiberi C et al. (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14: 707–733PubMedCrossRef
2.
Zurück zum Zitat Bolzer A, Kreth G, Solovei I et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157PubMedCrossRef Bolzer A, Kreth G, Solovei I et al. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3: e157PubMedCrossRef
3.
Zurück zum Zitat Boveri T (1909) Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch Zellforsch 3: 181–268 Boveri T (1909) Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch Zellforsch 3: 181–268
4.
Zurück zum Zitat Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138PubMedCrossRef Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4: e138PubMedCrossRef
5.
Zurück zum Zitat Brown JM, Leach J, Reittie JE et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172: 177–187PubMedCrossRef Brown JM, Leach J, Reittie JE et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172: 177–187PubMedCrossRef
6.
Zurück zum Zitat Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50: 161–176PubMed Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 50: 161–176PubMed
7.
Zurück zum Zitat Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50: 223–272PubMed Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50: 223–272PubMed
8.
Zurück zum Zitat Cremer T, Emmerich P, Lichter P (1987) Gibt es eine zelltypspezifische Anordnung des Chromatins in Säugerzellkernen? Argumente von Ungläubigen, Agnostikern und Gäubigen. Ann Univ Sarav Med [Suppl] 7: 67–71 Cremer T, Emmerich P, Lichter P (1987) Gibt es eine zelltypspezifische Anordnung des Chromatins in Säugerzellkernen? Argumente von Ungläubigen, Agnostikern und Gäubigen. Ann Univ Sarav Med [Suppl] 7: 67–71
9.
Zurück zum Zitat Cremer T, Lichter P, Borden J et al. (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80: 235–246PubMedCrossRef Cremer T, Lichter P, Borden J et al. (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum Genet 80: 235–246PubMedCrossRef
10.
Zurück zum Zitat Cremer M, Hase J von, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541–567PubMedCrossRef Cremer M, Hase J von, Volm T et al. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9: 541–567PubMedCrossRef
11.
Zurück zum Zitat Cremer M, Kupper K, Wagler B et al. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162: 809–820PubMedCrossRef Cremer M, Kupper K, Wagler B et al. (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162: 809–820PubMedCrossRef
12.
Zurück zum Zitat Cremer T, Cremer M, Dietzel S et al. (2006) Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol 18: 307–316PubMedCrossRef Cremer T, Cremer M, Dietzel S et al. (2006) Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol 18: 307–316PubMedCrossRef
13.
Zurück zum Zitat Cremer M, Müller S, Köhler D et al. (2007) Cell preparation and multicolor FISH in 3D preserved cultured mammalian cells. CSH Protocols doi:10.1101/pdb.prot4723 Cremer M, Müller S, Köhler D et al. (2007) Cell preparation and multicolor FISH in 3D preserved cultured mammalian cells. CSH Protocols doi:10.1101/pdb.prot4723
14.
Zurück zum Zitat Croft JA, Bridger JM, Boyle S et al. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119–1131PubMedCrossRef Croft JA, Bridger JM, Boyle S et al. (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145: 1119–1131PubMedCrossRef
15.
Zurück zum Zitat Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114: 212–229PubMedCrossRef Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114: 212–229PubMedCrossRef
16.
Zurück zum Zitat Goetze S, Mateos-Langerak J, Gierman HJ et al. (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27: 4475–4487PubMedCrossRef Goetze S, Mateos-Langerak J, Gierman HJ et al. (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27: 4475–4487PubMedCrossRef
17.
Zurück zum Zitat Grasser F, Witt V, Lanctot C et al. (2007) Nuclear topology of trans-dev genes and flanking ultra-conserved non-coding sequence clusters in mouse and chicken development. Chromosome Res 15: 67CrossRef Grasser F, Witt V, Lanctot C et al. (2007) Nuclear topology of trans-dev genes and flanking ultra-conserved non-coding sequence clusters in mouse and chicken development. Chromosome Res 15: 67CrossRef
18.
Zurück zum Zitat Grasser F, Neusser M, Fiegler H et al. (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121: 1876–1886PubMedCrossRef Grasser F, Neusser M, Fiegler H et al. (2008) Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 121: 1876–1886PubMedCrossRef
19.
Zurück zum Zitat Hepperger C, Otten S, Hase J von et al. (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116: 117–133PubMedCrossRef Hepperger C, Otten S, Hase J von et al. (2007) Preservation of large-scale chromatin structure in FISH experiments. Chromosoma 116: 117–133PubMedCrossRef
20.
Zurück zum Zitat Jhunjhunwala S, Zelm MC van, Peak MM et al. (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133: 265–279PubMedCrossRef Jhunjhunwala S, Zelm MC van, Peak MM et al. (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133: 265–279PubMedCrossRef
21.
Zurück zum Zitat Kupper K, Kolbl A, Biener D et al. (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116: 285–306PubMedCrossRef Kupper K, Kolbl A, Biener D et al. (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116: 285–306PubMedCrossRef
22.
Zurück zum Zitat Lanctot C, Cheutin T, Cremer M et al. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 104–115PubMedCrossRef Lanctot C, Cheutin T, Cremer M et al. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 104–115PubMedCrossRef
23.
Zurück zum Zitat Lanctot C, Kaspar C, Cremer T (2007) Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp Cell Res 313: 1449–1459PubMedCrossRef Lanctot C, Kaspar C, Cremer T (2007) Positioning of the mouse Hox gene clusters in the nuclei of developing embryos and differentiating embryoid bodies. Exp Cell Res 313: 1449–1459PubMedCrossRef
24.
Zurück zum Zitat Lichter P, Cremer T, Borden J et al. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234PubMedCrossRef Lichter P, Cremer T, Borden J et al. (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234PubMedCrossRef
25.
Zurück zum Zitat Lichter P, Tang CJ, Call K et al. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69PubMedCrossRef Lichter P, Tang CJ, Call K et al. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69PubMedCrossRef
26.
Zurück zum Zitat Mateos-Langerak J, Goetze S, Leonhardt H et al. (2007) Nuclear architecture: is it important for genome function and can we prove it? J Cell Biochem 102: 1067–1075PubMedCrossRef Mateos-Langerak J, Goetze S, Leonhardt H et al. (2007) Nuclear architecture: is it important for genome function and can we prove it? J Cell Biochem 102: 1067–1075PubMedCrossRef
27.
Zurück zum Zitat Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17: 80–90PubMedCrossRef Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17: 80–90PubMedCrossRef
28.
Zurück zum Zitat Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800PubMedCrossRef Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800PubMedCrossRef
29.
Zurück zum Zitat Müller S, Neusser M, Köhler D et al. (2007) Preparation of complex DNA probe sets for 3D FISH with up to six different fluorochromes. CSH Protocols doi:10.1101/pdb.prot4730 Müller S, Neusser M, Köhler D et al. (2007) Preparation of complex DNA probe sets for 3D FISH with up to six different fluorochromes. CSH Protocols doi:10.1101/pdb.prot4730
30.
Zurück zum Zitat Murmann AE, Gao J, Encinosa M et al. (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311: 14–26PubMedCrossRef Murmann AE, Gao J, Encinosa M et al. (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311: 14–26PubMedCrossRef
31.
Zurück zum Zitat Neusser M, Schubel V, Koch A et al. (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116: 307–320PubMedCrossRef Neusser M, Schubel V, Koch A et al. (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116: 307–320PubMedCrossRef
32.
Zurück zum Zitat Ohlsson R, Gondor A (2007) The 4C technique: the ‚Rosetta stone‘ for genome biology in 3D? Curr Opin Cell Biol 19: 321–325PubMedCrossRef Ohlsson R, Gondor A (2007) The 4C technique: the ‚Rosetta stone‘ for genome biology in 3D? Curr Opin Cell Biol 19: 321–325PubMedCrossRef
33.
Zurück zum Zitat Rabl C (1885) Über Zelltheilung. Morph Jb 10: 214–330 Rabl C (1885) Über Zelltheilung. Morph Jb 10: 214–330
34.
Zurück zum Zitat Roix JJ, McQueen PG, Munson PJ et al. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34: 287–291PubMedCrossRef Roix JJ, McQueen PG, Munson PJ et al. (2003) Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34: 287–291PubMedCrossRef
35.
Zurück zum Zitat Ronneberger O, Baddeley D, Scheipl F et al. (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 16: 523–562PubMedCrossRef Ronneberger O, Baddeley D, Scheipl F et al. (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 16: 523–562PubMedCrossRef
36.
Zurück zum Zitat Shopland LS, Lynch CR, Peterson KA et al. (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174: 27–38PubMedCrossRef Shopland LS, Lynch CR, Peterson KA et al. (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174: 27–38PubMedCrossRef
37.
Zurück zum Zitat Simonis M, Klous P, Splinter E et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38: 1348–1354PubMedCrossRef Simonis M, Klous P, Splinter E et al. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38: 1348–1354PubMedCrossRef
38.
Zurück zum Zitat Solovei I, Cavallo A, Schermelleh L et al. (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276: 10–23PubMedCrossRef Solovei I, Cavallo A, Schermelleh L et al. (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276: 10–23PubMedCrossRef
39.
Zurück zum Zitat Solovei I, Grasser F, Lanctôt C (2007) FISH on histological sections. CSH Protocols doi:10.1101/pdb.prot4729 Solovei I, Grasser F, Lanctôt C (2007) FISH on histological sections. CSH Protocols doi:10.1101/pdb.prot4729
40.
Zurück zum Zitat Solovei I, Lanctot C, Kösem S et al. (2007b) Adaptive evolution of nuclear architecture: unique organization of rod photoreceptorcell nuclei in nocturnal mammals. Chromosome Res 15: 12–13 Solovei I, Lanctot C, Kösem S et al. (2007b) Adaptive evolution of nuclear architecture: unique organization of rod photoreceptorcell nuclei in nocturnal mammals. Chromosome Res 15: 12–13
41.
Zurück zum Zitat Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12: 368–375PubMedCrossRef Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12: 368–375PubMedCrossRef
42.
Zurück zum Zitat Spilianakis CG, Lalioti MD, Town T et al. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435: 637–645PubMedCrossRef Spilianakis CG, Lalioti MD, Town T et al. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435: 637–645PubMedCrossRef
43.
Zurück zum Zitat Tanabe H, Muller S, Neusser M et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99: 4424–4429PubMedCrossRef Tanabe H, Muller S, Neusser M et al. (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA 99: 4424–4429PubMedCrossRef
44.
Zurück zum Zitat Trinkle-Mulcahy L, Lamond AI (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 582: 1960–1970PubMedCrossRef Trinkle-Mulcahy L, Lamond AI (2008) Nuclear functions in space and time: gene expression in a dynamic, constrained environment. FEBS Lett 582: 1960–1970PubMedCrossRef
45.
Zurück zum Zitat Ploeg M van der (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44: 7–42PubMed Ploeg M van der (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44: 7–42PubMed
46.
Zurück zum Zitat Walter J, Joffe B, Bolzer A et al. (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114: 367–378PubMedCrossRef Walter J, Joffe B, Bolzer A et al. (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114: 367–378PubMedCrossRef
47.
Zurück zum Zitat Zhao Z, Tavoosidana G, Sjolinder M et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38: 1341–1347PubMedCrossRef Zhao Z, Tavoosidana G, Sjolinder M et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38: 1341–1347PubMedCrossRef
Metadaten
Titel
3D-Fluoreszenz-in-situ-Hybridisierung und Zellkernarchitektur
verfasst von
Dr. M. Cremer
S. Müller
I. Solovei
T. Cremer
Publikationsdatum
01.12.2008
Verlag
Springer-Verlag
Erschienen in
medizinische genetik / Ausgabe 4/2008
Print ISSN: 0936-5931
Elektronische ISSN: 1863-5490
DOI
https://doi.org/10.1007/s11825-008-0132-9

Weitere Artikel der Ausgabe 4/2008

medizinische genetik 4/2008 Zur Ausgabe

Personalia

Gerd Utermann