Skip to main content
Erschienen in: World Journal of Surgery 1/2017

07.11.2016 | Innovative Surgical Techniques Around the World

3D Printed Surgical Instruments: The Design and Fabrication Process

verfasst von: Mitchell George, Kevin R. Aroom, Harvey G. Hawes, Brijesh S. Gill, Joseph Love

Erschienen in: World Journal of Surgery | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

3D printing is an additive manufacturing process allowing the creation of solid objects directly from a digital file. We believe recent advances in additive manufacturing may be applicable to surgical instrument design. This study investigates the feasibility, design and fabrication process of usable 3D printed surgical instruments.

Methods

The computer-aided design package SolidWorks (Dassault Systemes SolidWorks Corp., Waltham MA) was used to design a surgical set including hemostats, needle driver, scalpel handle, retractors and forceps. These designs were then printed on a selective laser sintering (SLS) Sinterstation HiQ (3D Systems, Rock Hill SC) using DuraForm EX plastic. The final printed products were evaluated by practicing general surgeons for ergonomic functionality and performance, this included simulated surgery and inguinal hernia repairs on human cadavers. Improvements were identified and addressed by adjusting design and build metrics.

Results

Repeated manufacturing processes and redesigns led to the creation of multiple functional and fully reproducible surgical sets utilizing the user feedback of surgeons. Iterative cycles including design, production and testing took an average of 3 days. Each surgical set was built using the SLS Sinterstation HiQ with an average build time of 6 h per set.

Conclusions

Functional 3D printed surgical instruments are feasible. Advantages compared to traditional manufacturing methods include no increase in cost for increased complexity, accelerated design to production times and surgeon specific modifications.
Literatur
1.
Zurück zum Zitat Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330, 11 Mar 1986 Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330, 11 Mar 1986
2.
Zurück zum Zitat Crump SS (1992) Apparatus and method for creating three-dimensional objects. US Patent 5,121,329, 9 June 1992 Crump SS (1992) Apparatus and method for creating three-dimensional objects. US Patent 5,121,329, 9 June 1992
3.
Zurück zum Zitat Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US Patent 4,938,816, 3 July 1990 Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US Patent 4,938,816, 3 July 1990
4.
Zurück zum Zitat Berry Connell, Craven Brown (1997) Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 19(1):90–96CrossRefPubMed Berry Connell, Craven Brown (1997) Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med Eng Phys 19(1):90–96CrossRefPubMed
5.
Zurück zum Zitat Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216CrossRefPubMedPubMedCentral Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Uygun BE (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820CrossRefPubMedPubMedCentral Uygun BE (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Leukers B (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124CrossRefPubMed Leukers B (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124CrossRefPubMed
9.
Zurück zum Zitat Solar P, Ulm C, Imhof H et al (1992) Precision of threedimensional CT-assisted model production in the maxillofacial area. Eur J Radiol 2(5):473–477 Solar P, Ulm C, Imhof H et al (1992) Precision of threedimensional CT-assisted model production in the maxillofacial area. Eur J Radiol 2(5):473–477
10.
Zurück zum Zitat Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I (2007) Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 18(4):740–747CrossRefPubMed Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I (2007) Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 18(4):740–747CrossRefPubMed
11.
Zurück zum Zitat Meehan M, Teschner M, Girod S (2003) Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res 6(supplement 1):102–107CrossRefPubMed Meehan M, Teschner M, Girod S (2003) Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res 6(supplement 1):102–107CrossRefPubMed
12.
Zurück zum Zitat Silva DN (2008) Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 36(8):443–449CrossRefPubMed Silva DN (2008) Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 36(8):443–449CrossRefPubMed
13.
Zurück zum Zitat Flugge TV (2013) Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofacial Surg 71(8):1340–1346CrossRef Flugge TV (2013) Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. J Oral Maxillofacial Surg 71(8):1340–1346CrossRef
14.
Zurück zum Zitat Kondor S (2013) On demand additive manufacturing of a basic surgical kit. J Med Devices ASME 7:030916CrossRef Kondor S (2013) On demand additive manufacturing of a basic surgical kit. J Med Devices ASME 7:030916CrossRef
15.
Zurück zum Zitat Kondor S (2013) Personalized surgical instruments. J Med Devices ASME 7(3):030934CrossRef Kondor S (2013) Personalized surgical instruments. J Med Devices ASME 7(3):030934CrossRef
Metadaten
Titel
3D Printed Surgical Instruments: The Design and Fabrication Process
verfasst von
Mitchell George
Kevin R. Aroom
Harvey G. Hawes
Brijesh S. Gill
Joseph Love
Publikationsdatum
07.11.2016
Verlag
Springer International Publishing
Erschienen in
World Journal of Surgery / Ausgabe 1/2017
Print ISSN: 0364-2313
Elektronische ISSN: 1432-2323
DOI
https://doi.org/10.1007/s00268-016-3814-5

Weitere Artikel der Ausgabe 1/2017

World Journal of Surgery 1/2017 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.