Skip to main content
Erschienen in:

02.05.2023 | Regenerative Medicine (SM Wu, Section Editor)

3D Printing Approaches to Engineer Cardiac Tissue

verfasst von: Ting-Yu Lu, Yi Xiang, Min Tang, Shaochen Chen

Erschienen in: Current Cardiology Reports | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Bioengineering of functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. 3D bioprinting was developed to create cardiac tissue in hydrogels that can mimic the structural, physiological, and functional features of native myocardium. Through a detailed review of the 3D printing technologies and bioink materials used in the creation of a heart tissue, this article discusses the potential of engineered heart tissues in biomedical applications.

Recent Findings

In this review, we discussed the recent progress in 3D bioprinting strategies for cardiac tissue engineering, including bioink and 3D bioprinting methods as well as examples of engineered cardiac tissue such as in vitro cardiac models and vascular channels.

Summary

3D printing is a powerful tool for creating in vitro cardiac tissues that are structurally and functionally similar to real tissues. The use of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) enables the generation of patient-specific tissues. These tissues have the potential to be used for regenerative therapies, disease modeling, and drug testing.
Literatur
1.
Zurück zum Zitat Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.PubMedPubMedCentralCrossRef Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Benatti RD, Oliveira GH, Bacal F. Heart transplantation for Chagas cardiomyopathy. J Heart Lung Transplant. 2017;36(6):597–603.PubMedCrossRef Benatti RD, Oliveira GH, Bacal F. Heart transplantation for Chagas cardiomyopathy. J Heart Lung Transplant. 2017;36(6):597–603.PubMedCrossRef
3.
Zurück zum Zitat Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials. 2021;6(5):1388–401.PubMedCrossRef Liu N, Ye X, Yao B, Zhao M, Wu P, Liu G, et al. Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials. 2021;6(5):1388–401.PubMedCrossRef
4.
Zurück zum Zitat Qasim M, Haq F, Kang M-H, Kim J-H. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed. 2019;14:1311.CrossRef Qasim M, Haq F, Kang M-H, Kim J-H. 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed. 2019;14:1311.CrossRef
5.
Zurück zum Zitat Thomas D, Choi S, Alamana C, Parker KK, Wu JC. Cellular and engineered organoids for cardiovascular models. Circ Res. 2022;130(12):1780–802.PubMedCrossRef Thomas D, Choi S, Alamana C, Parker KK, Wu JC. Cellular and engineered organoids for cardiovascular models. Circ Res. 2022;130(12):1780–802.PubMedCrossRef
6.
Zurück zum Zitat Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 2019;176(4):913–27. e18. Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 2019;176(4):913–27. e18.
7.
Zurück zum Zitat Lee SJ, Yoo JJ, Atala A. Biomaterials and tissue engineering. Clin Regen Med Urol. 2018;17–51. Lee SJ, Yoo JJ, Atala A. Biomaterials and tissue engineering. Clin Regen Med Urol. 2018;17–51.
8.
Zurück zum Zitat Chandika P, Heo S-Y, Kim T-H, Oh G-W, Kim G-H, Kim M-S, et al. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol. 2020;164:2329–57.PubMedCrossRef Chandika P, Heo S-Y, Kim T-H, Oh G-W, Kim G-H, Kim M-S, et al. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol. 2020;164:2329–57.PubMedCrossRef
9.
Zurück zum Zitat Sheehy SP, Grosberg A, Qin P, Behm DJ, Ferrier JP, Eagleson MA, et al. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Exp Biol Med. 2017;242(17):1643–56.CrossRef Sheehy SP, Grosberg A, Qin P, Behm DJ, Ferrier JP, Eagleson MA, et al. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Exp Biol Med. 2017;242(17):1643–56.CrossRef
10.
Zurück zum Zitat Saludas L, Pascual-Gil S, Prósper F, Garbayo E, Blanco-Prieto M. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523(2):454–75.PubMedCrossRef Saludas L, Pascual-Gil S, Prósper F, Garbayo E, Blanco-Prieto M. Hydrogel based approaches for cardiac tissue engineering. Int J Pharm. 2017;523(2):454–75.PubMedCrossRef
11.
Zurück zum Zitat Fujita B, Zimmermann W-H. Myocardial tissue engineering for regenerative applications. Curr Cardiol Rep. 2017;19(9):1–10.CrossRef Fujita B, Zimmermann W-H. Myocardial tissue engineering for regenerative applications. Curr Cardiol Rep. 2017;19(9):1–10.CrossRef
13.
Zurück zum Zitat Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A review of 3D printing technology for medical applications. Engineering. 2018;4(5):729–42.CrossRef Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A review of 3D printing technology for medical applications. Engineering. 2018;4(5):729–42.CrossRef
14.
Zurück zum Zitat Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol. 2022;1–20. Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol. 2022;1–20.
15.
Zurück zum Zitat Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials science. 2021;9(3):535–73.PubMedCrossRef Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials science. 2021;9(3):535–73.PubMedCrossRef
16.
Zurück zum Zitat Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3(5):21–37.PubMedPubMedCentralCrossRef Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3(5):21–37.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.PubMedCrossRef Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.PubMedCrossRef
18.
Zurück zum Zitat Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME. UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods. 2018;24(2):74–88.PubMedCrossRef Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME. UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods. 2018;24(2):74–88.PubMedCrossRef
19.
Zurück zum Zitat Van Eijnatten M, van Dijk R, Dobbe J, Streekstra G, Koivisto J, Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Med Eng Phys. 2018;51:6–16.PubMedCrossRef Van Eijnatten M, van Dijk R, Dobbe J, Streekstra G, Koivisto J, Wolff J. CT image segmentation methods for bone used in medical additive manufacturing. Med Eng Phys. 2018;51:6–16.PubMedCrossRef
20.
Zurück zum Zitat Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, et al. 3D printing from MRI data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging. 2017;45(3):635–45.PubMedCrossRef Ripley B, Levin D, Kelil T, Hermsen JL, Kim S, Maki JH, et al. 3D printing from MRI data: harnessing strengths and minimizing weaknesses. J Magn Reson Imaging. 2017;45(3):635–45.PubMedCrossRef
21.
Zurück zum Zitat Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest advances in 3D bioprinting of cardiac tissues. Adv Mater Technol. 2022;2101636. Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest advances in 3D bioprinting of cardiac tissues. Adv Mater Technol. 2022;2101636.
23.
Zurück zum Zitat Liu J, Miller K, Ma X, Dewan S, Lawrence N, Whang G, et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256: 120204.PubMedPubMedCentralCrossRef Liu J, Miller K, Ma X, Dewan S, Lawrence N, Whang G, et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials. 2020;256: 120204.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater. 2020;32(45):2003915.CrossRef Lee S, Sani ES, Spencer AR, Guan Y, Weiss AS, Annabi N. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv Mater. 2020;32(45):2003915.CrossRef
25.
Zurück zum Zitat Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiologica Sinica. 2019;35(3):284.PubMedPubMedCentral Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiologica Sinica. 2019;35(3):284.PubMedPubMedCentral
26.
Zurück zum Zitat Cho S, Discher DE, Leong KW, Vunjak-Novakovic G, Wu JC. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods. 2022;19(9):1064–71.PubMedCrossRef Cho S, Discher DE, Leong KW, Vunjak-Novakovic G, Wu JC. Challenges and opportunities for the next generation of cardiovascular tissue engineering. Nat Methods. 2022;19(9):1064–71.PubMedCrossRef
27.
Zurück zum Zitat Puluca N, Lee S, Doppler S, Münsterer A, Dreßen M, Krane M, et al. Bioprinting approaches to engineering vascularized 3D cardiac tissues. Curr Cardiol Rep. 2019;21(9):1–11.CrossRef Puluca N, Lee S, Doppler S, Münsterer A, Dreßen M, Krane M, et al. Bioprinting approaches to engineering vascularized 3D cardiac tissues. Curr Cardiol Rep. 2019;21(9):1–11.CrossRef
28.
Zurück zum Zitat Hu JB, Tomov ML, Buikema JW, Chen C, Mahmoudi M, Wu SM, et al. Cardiovascular tissue bioprinting: physical and chemical processes. Appl Phys Rev. 2018;5(4): 041106.PubMedPubMedCentralCrossRef Hu JB, Tomov ML, Buikema JW, Chen C, Mahmoudi M, Wu SM, et al. Cardiovascular tissue bioprinting: physical and chemical processes. Appl Phys Rev. 2018;5(4): 041106.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.PubMedPubMedCentralCrossRef Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev. 2017;117(20):12764–850.PubMedPubMedCentralCrossRef Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev. 2017;117(20):12764–850.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthcare Mater. 2017;6(1):1601118.CrossRef Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthcare Mater. 2017;6(1):1601118.CrossRef
33.
Zurück zum Zitat Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci - Mater Med. 2019;30(10):1–10.CrossRef Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci - Mater Med. 2019;30(10):1–10.CrossRef
35.
Zurück zum Zitat Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing. 2018;1(4):215–24.CrossRef Ying G, Jiang N, Yu C, Zhang YS. Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing. 2018;1(4):215–24.CrossRef
36.
Zurück zum Zitat Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4): 042001.PubMedCrossRef Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4): 042001.PubMedCrossRef
37.
Zurück zum Zitat Jeon O, Lee YB, Hinton TJ, Feinberg AW, Alsberg E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Materials Today Chemistry. 2019;12:61–70.PubMedPubMedCentralCrossRef Jeon O, Lee YB, Hinton TJ, Feinberg AW, Alsberg E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Materials Today Chemistry. 2019;12:61–70.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):2103691.CrossRef Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality. Adv Mater. 2022;34(2):2103691.CrossRef
39.
Zurück zum Zitat Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Addit Manuf. 2021;37: 101639. Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Addit Manuf. 2021;37: 101639.
40.
Zurück zum Zitat Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, et al. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting. 2019;13: e00040.PubMedPubMedCentralCrossRef Liu J, He J, Liu J, Ma X, Chen Q, Lawrence N, et al. Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting. 2019;13: e00040.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mehrotra S, de Melo BA, Hirano M, Keung W, Li RA, Mandal BB, et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium-on-a-chip application. Adv Func Mater. 2020;30(12):1907436.CrossRef Mehrotra S, de Melo BA, Hirano M, Keung W, Li RA, Mandal BB, et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium-on-a-chip application. Adv Func Mater. 2020;30(12):1907436.CrossRef
43.
Zurück zum Zitat Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75–88.PubMedCrossRef Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75–88.PubMedCrossRef
44.
Zurück zum Zitat Cui H, Liu C, Esworthy T, Huang Y, Yu Z-x, Zhou X, et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv. 2020;6(26):eabb5067. Cui H, Liu C, Esworthy T, Huang Y, Yu Z-x, Zhou X, et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv. 2020;6(26):eabb5067.
45.
Zurück zum Zitat de Melo BA, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60–76.PubMedCrossRef de Melo BA, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60–76.PubMedCrossRef
46.
Zurück zum Zitat Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood–brain barrier. Adv Mater. 2021;33(5):2004776.CrossRef Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood–brain barrier. Adv Mater. 2021;33(5):2004776.CrossRef
47.
Zurück zum Zitat Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular tissue engineering: a review. Mater Technol. 2018;33(6):433–42.CrossRef Roy A, Saxena V, Pandey LM. 3D printing for cardiovascular tissue engineering: a review. Mater Technol. 2018;33(6):433–42.CrossRef
48.
Zurück zum Zitat You S, Wang P, Schimelman J, Hwang HH, Chen S. High-fidelity 3D printing using flashing photopolymerization. Addit Manuf. 2019;30: 100834.PubMedPubMedCentral You S, Wang P, Schimelman J, Hwang HH, Chen S. High-fidelity 3D printing using flashing photopolymerization. Addit Manuf. 2019;30: 100834.PubMedPubMedCentral
49.
Zurück zum Zitat Xie H, Yang K-K, Wang Y-Z. Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers. Prog Polym Sci. 2019;95:32–64.CrossRef Xie H, Yang K-K, Wang Y-Z. Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers. Prog Polym Sci. 2019;95:32–64.CrossRef
50.
Zurück zum Zitat Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1–13.PubMedCrossRef Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials. 2019;194:1–13.PubMedCrossRef
51.
Zurück zum Zitat Yu C, You S, Zhu W, Sun B, Chen S. DMD-based rapid 3D bioprinting for precision tissue engineering and regenerative medicine. Emerging Digital Micromirror Device Based Systems and Applications XII: SPIE; 2020. p. 15–26. Yu C, You S, Zhu W, Sun B, Chen S. DMD-based rapid 3D bioprinting for precision tissue engineering and regenerative medicine. Emerging Digital Micromirror Device Based Systems and Applications XII: SPIE; 2020. p. 15–26.
52.
Zurück zum Zitat Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–15.PubMedPubMedCentralCrossRef Zhu W, Qu X, Zhu J, Ma X, Patel S, Liu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–15.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthcare Mater. 2017;6(12):1601451.CrossRef Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X, et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthcare Mater. 2017;6(12):1601451.CrossRef
54.
Zurück zum Zitat Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height. Bio-Design and Manufacturing. 2019;2(3):172–80.CrossRef Alruwaili M, Lopez JA, McCarthy K, Reynaud EG, Rodriguez BJ. Liquid-phase 3D bioprinting of gelatin alginate hydrogels: influence of printing parameters on hydrogel line width and layer height. Bio-Design and Manufacturing. 2019;2(3):172–80.CrossRef
55.
Zurück zum Zitat Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4): 044107.PubMedCrossRef Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4): 044107.PubMedCrossRef
56.
Zurück zum Zitat Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 2019;575(7782):330–5.PubMedCrossRef Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 2019;575(7782):330–5.PubMedCrossRef
57.
Zurück zum Zitat Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Advanced materials technologies. 2020;5(8):1901044.PubMedPubMedCentralCrossRef Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, et al. Extrusion and microfluidic-based bioprinting to fabricate biomimetic tissues and organs. Advanced materials technologies. 2020;5(8):1901044.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20: e00093.CrossRef Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20: e00093.CrossRef
59.
Zurück zum Zitat Ramesh S, Harrysson OL, Rao PK, Tamayol A, Cormier DR, Zhang Y, et al. Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting. 2021;21: e00116.CrossRef Ramesh S, Harrysson OL, Rao PK, Tamayol A, Cormier DR, Zhang Y, et al. Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting. 2021;21: e00116.CrossRef
60.
Zurück zum Zitat Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2): 022003.PubMedPubMedCentralCrossRef Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2): 022003.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793–833.PubMedCrossRef Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793–833.PubMedCrossRef
62.
Zurück zum Zitat Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.PubMedCrossRef Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.PubMedCrossRef
63.
Zurück zum Zitat Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106.PubMedCrossRef Jang J, Park JY, Gao G, Cho D-W. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials. 2018;156:88–106.PubMedCrossRef
64.
Zurück zum Zitat Vikram Singh A, Hasan Dad Ansari M, Wang S, Laux P, Luch A, Kumar A, et al. The adoption of three-dimensional additive manufacturing from biomedical material design to 3D organ printing. Appl Sci. 2019;9(4):811. Vikram Singh A, Hasan Dad Ansari M, Wang S, Laux P, Luch A, Kumar A, et al. The adoption of three-dimensional additive manufacturing from biomedical material design to 3D organ printing. Appl Sci. 2019;9(4):811.
65.
Zurück zum Zitat Rahmani Dabbagh S, Rezapour Sarabi M, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S. 3D bioprinted organ‐on‐chips. Aggregate. 2022;e197. Rahmani Dabbagh S, Rezapour Sarabi M, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S. 3D bioprinted organ‐on‐chips. Aggregate. 2022;e197.
66.
Zurück zum Zitat Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, et al. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release. 2021;329:237–56.PubMedCrossRef Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, et al. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release. 2021;329:237–56.PubMedCrossRef
67.
Zurück zum Zitat Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64–83.PubMedPubMedCentralCrossRef Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64–83.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Hong N, Yang GH, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater. 2018;106(1):444–59.PubMedCrossRef Hong N, Yang GH, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater. 2018;106(1):444–59.PubMedCrossRef
69.
Zurück zum Zitat Harley WS, Li CC, Toombs J, O’Connell CD, Taylor HK, Heath DE, et al. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: a comprehensive review. Bioprinting. 2021;23: e00147.CrossRef Harley WS, Li CC, Toombs J, O’Connell CD, Taylor HK, Heath DE, et al. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: a comprehensive review. Bioprinting. 2021;23: e00147.CrossRef
70.
Zurück zum Zitat Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, et al. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication. 2018;10(3): 035005.PubMedCrossRef Koch L, Deiwick A, Franke A, Schwanke K, Haverich A, Zweigerdt R, et al. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication. 2018;10(3): 035005.PubMedCrossRef
71.
Zurück zum Zitat Wang Z, Jin X, Tian Z, Menard F, Holzman JF, Kim K. A Novel, Well-resolved direct laser bioprinting system for rapid cell encapsulation and microwell fabrication. Adv Healthcare Mater. 2018;7(9):1701249.CrossRef Wang Z, Jin X, Tian Z, Menard F, Holzman JF, Kim K. A Novel, Well-resolved direct laser bioprinting system for rapid cell encapsulation and microwell fabrication. Adv Healthcare Mater. 2018;7(9):1701249.CrossRef
72.
Zurück zum Zitat Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199.PubMedPubMedCentralCrossRef Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Dobos A, Van Hoorick J, Steiger W, Gruber P, Markovic M, Andriotis OG, et al. Thiol–gelatin–norbornene bioink for laser-based high-definition bioprinting. Adv Healthcare Mater. 2020;9(15):1900752.CrossRef Dobos A, Van Hoorick J, Steiger W, Gruber P, Markovic M, Andriotis OG, et al. Thiol–gelatin–norbornene bioink for laser-based high-definition bioprinting. Adv Healthcare Mater. 2020;9(15):1900752.CrossRef
74.
Zurück zum Zitat Song J, Michas C, Chen CS, White AE, Grinstaff MW. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Adv Healthcare Mater. 2020;9(1):1901217.CrossRef Song J, Michas C, Chen CS, White AE, Grinstaff MW. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: opportunities presented by two-photon polymerization. Adv Healthcare Mater. 2020;9(1):1901217.CrossRef
75.
Zurück zum Zitat Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines. 2017;8(4):113.PubMedCentralCrossRef Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines. 2017;8(4):113.PubMedCentralCrossRef
76.
Zurück zum Zitat Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. J Opt. 2018;20(5): 053001.CrossRef Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. J Opt. 2018;20(5): 053001.CrossRef
77.
Zurück zum Zitat Bouzin M, Zeynali A, Marini M, Sironi L, Scodellaro R, D’Alfonso L, et al. Multiphoton laser fabrication of hybrid photo-activable biomaterials. Sensors. 2021;21(17):5891.PubMedPubMedCentralCrossRef Bouzin M, Zeynali A, Marini M, Sironi L, Scodellaro R, D’Alfonso L, et al. Multiphoton laser fabrication of hybrid photo-activable biomaterials. Sensors. 2021;21(17):5891.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Dabbagh SR, Sarabi MR, Birtek MT, Seyfi S, Sitti M, Tasoglu S. 3D-printed microrobots from design to translation. Nat Commun. 2022;13(1):1–24.CrossRef Dabbagh SR, Sarabi MR, Birtek MT, Seyfi S, Sitti M, Tasoglu S. 3D-printed microrobots from design to translation. Nat Commun. 2022;13(1):1–24.CrossRef
79.
Zurück zum Zitat Ayuso JM, Virumbrales-Munoz M, McMinn PH, Rehman S, Gomez I, Karim MR, et al. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients. Lab Chip. 2019;19(20):3461–71.PubMedPubMedCentralCrossRef Ayuso JM, Virumbrales-Munoz M, McMinn PH, Rehman S, Gomez I, Karim MR, et al. Tumor-on-a-chip: a microfluidic model to study cell response to environmental gradients. Lab Chip. 2019;19(20):3461–71.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication. 2021;13(3): 035044.CrossRef Velasco-Mallorquí F, Rodríguez-Comas J, Ramón-Azcón J. Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication. 2021;13(3): 035044.CrossRef
81.
Zurück zum Zitat Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv Healthcare Mater. 2022;11(2):2101873.CrossRef Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, et al. Development and characterization of gelatin-norbornene bioink to understand the interplay between physical architecture and micro-capillary formation in biofabricated vascularized constructs. Adv Healthcare Mater. 2022;11(2):2101873.CrossRef
82.
Zurück zum Zitat •• Liu Y, Zhang Y, Mei T, Cao H, Hu Y, Jia W, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment. Advanced Science. 2022;9(9):2104299. Findings from the research uncover hESCs-derived EVC spheroids rather than single cells are more accessible for complex vasculature engineering, which is of great potential for cardiac tissue vascular engineering and MI treatment by cell therapy.PubMedPubMedCentralCrossRef •• Liu Y, Zhang Y, Mei T, Cao H, Hu Y, Jia W, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment. Advanced Science. 2022;9(9):2104299. Findings from the research uncover hESCs-derived EVC spheroids rather than single cells are more accessible for complex vasculature engineering, which is of great potential for cardiac tissue vascular engineering and MI treatment by cell therapy.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Peate I. The circulatory system. British Journal of Healthcare Assistants. 2020;14(11):548–53.CrossRef Peate I. The circulatory system. British Journal of Healthcare Assistants. 2020;14(11):548–53.CrossRef
84.
Zurück zum Zitat Lee SE, Park YS. The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol. 2017;13(3):257–61.CrossRef Lee SE, Park YS. The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol. 2017;13(3):257–61.CrossRef
85.
Zurück zum Zitat Wang L, Xin X, Li P, Dou J, Han X, Shen J, et al. Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids Surf, B. 2021;205: 111855.CrossRef Wang L, Xin X, Li P, Dou J, Han X, Shen J, et al. Stepwise immobilization of keratin-dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide. Colloids Surf, B. 2021;205: 111855.CrossRef
86.
Zurück zum Zitat Chang WG, Niklason LE. A short discourse on vascular tissue engineering. NPJ Regenerative medicine. 2017;2(1):1–8.CrossRef Chang WG, Niklason LE. A short discourse on vascular tissue engineering. NPJ Regenerative medicine. 2017;2(1):1–8.CrossRef
87.
Zurück zum Zitat Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res. 2018;114(4):601–10.PubMedPubMedCentralCrossRef Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res. 2018;114(4):601–10.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat •• Wang D, Maharjan S, Kuang X, Wang Z, Mille LS, Tao M, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv. 2022;8(43):eabq6900. This study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future. •• Wang D, Maharjan S, Kuang X, Wang Z, Mille LS, Tao M, et al. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. Sci Adv. 2022;8(43):eabq6900. This study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.
89.
Zurück zum Zitat Skylar-Scott MA, Uzel SG, Nam LL, Ahrens JH, Truby RL, Damaraju S, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9):eaaw2459. Skylar-Scott MA, Uzel SG, Nam LL, Ahrens JH, Truby RL, Damaraju S, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5(9):eaaw2459.
90.
Zurück zum Zitat Miller KL, Xiang Y, Yu C, Pustelnik J, Wu J, Ma X, et al. Rapid 3D bioprinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing. Organs-on-a-Chip. 2021;3: 100007.CrossRef Miller KL, Xiang Y, Yu C, Pustelnik J, Wu J, Ma X, et al. Rapid 3D bioprinting of a human iPSC-derived cardiac micro-tissue for high-throughput drug testing. Organs-on-a-Chip. 2021;3: 100007.CrossRef
91.
Zurück zum Zitat Samson AAS, Song JM. Scaffold-free 3D printing for fabrication of biomimetic branched multinucleated cardiac tissue construct: a promising ex vivo model for in situ detection of drug-induced sodium ion channel responses. Appl Mater Today. 2022;27: 101416.CrossRef Samson AAS, Song JM. Scaffold-free 3D printing for fabrication of biomimetic branched multinucleated cardiac tissue construct: a promising ex vivo model for in situ detection of drug-induced sodium ion channel responses. Appl Mater Today. 2022;27: 101416.CrossRef
92.
Zurück zum Zitat •• Ahrens JH, Uzel SG, Skylar‐Scott M, Mata MM, Lu A, Kroll KT, et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv Mater. 2022:2200217. Findings from this research showed that a bioink composed of contractile cardiac aOBBs is first generated and aligned cardiac tissue sheets with linear, spiral, and chevron features are printed. Finally, the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment is highlighted. •• Ahrens JH, Uzel SG, Skylar‐Scott M, Mata MM, Lu A, Kroll KT, et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Adv Mater. 2022:2200217. Findings from this research showed that a bioink composed of contractile cardiac aOBBs is first generated and aligned cardiac tissue sheets with linear, spiral, and chevron features are printed. Finally, the ability to spatially control the magnitude and direction of contractile force by printing cardiac sheets with different aOBB alignment is highlighted.
Metadaten
Titel
3D Printing Approaches to Engineer Cardiac Tissue
verfasst von
Ting-Yu Lu
Yi Xiang
Min Tang
Shaochen Chen
Publikationsdatum
02.05.2023
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 6/2023
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-023-01881-y

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Frühe Hyperoxie nach Reanimation schlecht für die Prognose?

Kommt es sehr früh nach einer kardiopulmonalen Reanimation zu einem Zustand der Hyperoxie, ist dies bei Patientinnen und Patienten nach einem Herzstillstand mit schlechteren funktionellen Ergebnissen assoziiert. Das zeigt eine Sekundäranalyse der TTM-2-Studie.

Lp(a) zur Risikoeinschätzung bei Thoraxschmerzen

Der Lp(a)-Wert kann dazu beitragen, bei stabilen Patienten mit neu aufgetretenen Thoraxschmerzen und ohne KHK-Diagnose die Wahrscheinlichkeit für das Vorliegen von Koronarstenosen abzuschätzen.

Finerenon bei eGFR-Verlust nicht gleich absetzen!

Der Mineralokortikoid-Rezeptor-Antagonist Finerenon verbessert die Prognose bei Herzinsuffizienz mit leicht reduzierter oder erhaltener Ejektionsfraktion. Ein Rückgang der eGFR zu Beginn der Therapie scheint diese Wirkung nicht wesentlich zu mindern.

LVAD auch bei kalt-trockener terminaler Herzinsuffizienz wirksam

Auch Personen mit kalt-trockener terminaler Herzinsuffizienz profitieren von einem linksventrikulären Unterstützungssystem (LVAD), wie Daten aus einem US-Register nahelegen. Doch es gibt Besonderheiten.     

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.