Skip to main content
Erschienen in:

03.08.2020 | Regenerative Biology and Medicine in Osteoporosis (S Bryant and M Krebs, Section Editors)

3D Printing for Bone Regeneration

verfasst von: Amit Bandyopadhyay, Indranath Mitra, Susmita Bose

Erschienen in: Current Osteoporosis Reports | Ausgabe 5/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The purpose of this review is to illustrate the current state of 3D printing (3DP) technology used in biomedical industry towards bone regeneration. We have focused our efforts towards correlating materials and structural design aspects of 3DP with biological response from host tissue upon implantation. The primary question that we have tried to address is—can 3DP be a viable technology platform for bone regeneration devices?

Recent Findings

Recent findings show that 3DP is a versatile technology platform for numerous materials for mass customizable bone regeneration devices that are also getting approval from different regulatory bodies worldwide.

Summary

After a brief introduction of different 3DP technologies, this review elaborates 3DP of different materials and devices for bone regeneration. From cell-based bioprinting to acellular patient-matched metallic or ceramic devices, 3DP has tremendous potential to improve the quality of human life through bone regeneration among patients of all ages.
Literatur
2.
Zurück zum Zitat •• Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Progress in Materials Science. 2018;93:45–111. This recent review provides a thorough understanding of different AM technologies, their compatibility with manufacturing biomaterials for clinical applications, and subsequent challenges that need to be addressed in the coming days. It covers a broad area of biomedical industry concerned with 3DP of biomedical electronic devices to pharmaceutical drug delivery vehicles to bone regenerative implants. •• Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Progress in Materials Science. 2018;93:45–111. This recent review provides a thorough understanding of different AM technologies, their compatibility with manufacturing biomaterials for clinical applications, and subsequent challenges that need to be addressed in the coming days. It covers a broad area of biomedical industry concerned with 3DP of biomedical electronic devices to pharmaceutical drug delivery vehicles to bone regenerative implants.
3.
Zurück zum Zitat Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–41.CrossRef Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–41.CrossRef
4.
Zurück zum Zitat Peng F, Vogt BD, Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf. 2018;22:197–206. Peng F, Vogt BD, Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf. 2018;22:197–206.
5.
Zurück zum Zitat Gonzalez JA, Mireles J, Lin Y, Wicker RB. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int. 2016;42:10559–64.CrossRef Gonzalez JA, Mireles J, Lin Y, Wicker RB. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int. 2016;42:10559–64.CrossRef
6.
Zurück zum Zitat Hossain MS, Gonzalez JA, Hernandez RM, Shuvo MAI, Mireles J, Choudhuri A, et al. Fabrication of smart parts using powder bed fusion additive manufacturing technology. Addit Manuf. 2016;10:58–66. Hossain MS, Gonzalez JA, Hernandez RM, Shuvo MAI, Mireles J, Choudhuri A, et al. Fabrication of smart parts using powder bed fusion additive manufacturing technology. Addit Manuf. 2016;10:58–66.
7.
Zurück zum Zitat Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf. 2018;22:758–74.PubMedPubMedCentral Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf. 2018;22:758–74.PubMedPubMedCentral
8.
Zurück zum Zitat Bose S, Traxel KD, Vu AA, Bandyopadhyay A. Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS Bull. 2019;44:494–504.CrossRef Bose S, Traxel KD, Vu AA, Bandyopadhyay A. Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS Bull. 2019;44:494–504.CrossRef
9.
Zurück zum Zitat Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, Heterogeneous Cell-Laden Tissue Constructs. Adv Mater. 2014;26:3124–30.CrossRef Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, Heterogeneous Cell-Laden Tissue Constructs. Adv Mater. 2014;26:3124–30.CrossRef
10.
Zurück zum Zitat Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.CrossRef Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.CrossRef
12.
Zurück zum Zitat Sultan S, Siqueira G, Zimmermann T, Mathew AP. 3D printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomed Eng. 2017;2:29–34.CrossRef Sultan S, Siqueira G, Zimmermann T, Mathew AP. 3D printing of nano-cellulosic biomaterials for medical applications. Curr Opin Biomed Eng. 2017;2:29–34.CrossRef
13.
Zurück zum Zitat •• Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Advanced Healthcare Materials. 2016;5:2353–62. Bioprinting is still in its infancy but recent developments have been made to successfully implement this technology in bone regeneration. This article illustrates inspired cartilage printing using alternative novel system comprised of stem cells-alginate bioink and PCL crosslinking towards enhanced protein adhesion. •• Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Advanced Healthcare Materials. 2016;5:2353–62. Bioprinting is still in its infancy but recent developments have been made to successfully implement this technology in bone regeneration. This article illustrates inspired cartilage printing using alternative novel system comprised of stem cells-alginate bioink and PCL crosslinking towards enhanced protein adhesion.
14.
Zurück zum Zitat Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5:1690–8.CrossRef Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5:1690–8.CrossRef
15.
Zurück zum Zitat Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45:23–44.CrossRef Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45:23–44.CrossRef
16.
Zurück zum Zitat Comesaña R, Lusquiños F, Del Val J, Quintero F, Riveiro A, Boutinguiza M, et al. Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates. Comesaña R, Lusquiños F, Del Val J, Quintero F, Riveiro A, Boutinguiza M, et al. Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates.
17.
Zurück zum Zitat Bergemann C, Cornelsen M, Quade A, Laube T, Schnabelrauch M, Rebl H, et al. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. Mater Sci Eng C Biomimet Mater Sens Syst. 2016;59:514–23.CrossRef Bergemann C, Cornelsen M, Quade A, Laube T, Schnabelrauch M, Rebl H, et al. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. Mater Sci Eng C Biomimet Mater Sens Syst. 2016;59:514–23.CrossRef
18.
Zurück zum Zitat Zhang Y, Xia L, Zhai D, Shi M, Luo Y, Feng C, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale. 2015;7:19207–21.CrossRef Zhang Y, Xia L, Zhai D, Shi M, Luo Y, Feng C, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale. 2015;7:19207–21.CrossRef
19.
Zurück zum Zitat Sweet L, Kang Y, Czisch C, Witek L, Shi Y, Smay J, et al. Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann cell growth and behavior. PLoS One. 2015;10:e0139820.CrossRef Sweet L, Kang Y, Czisch C, Witek L, Shi Y, Smay J, et al. Geometrical versus random beta-TCP scaffolds: exploring the effects on Schwann cell growth and behavior. PLoS One. 2015;10:e0139820.CrossRef
20.
Zurück zum Zitat Bose S, Tarafder S, Bandyopadhyay A. Effect of chemistry on Osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng. 2017;45:261–72.CrossRef Bose S, Tarafder S, Bandyopadhyay A. Effect of chemistry on Osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng. 2017;45:261–72.CrossRef
21.
Zurück zum Zitat Bose S, Banerjee D, Robertson S, Vahabzadeh S. Enhanced in vivo bone and blood vessel formation by Iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann Biomed Eng. 2018;46:1241–53.CrossRef Bose S, Banerjee D, Robertson S, Vahabzadeh S. Enhanced in vivo bone and blood vessel formation by Iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann Biomed Eng. 2018;46:1241–53.CrossRef
22.
Zurück zum Zitat •• Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials today. 2013;16:496–504. This review brings 3D printed ceramic scaffolds to the forefront of bone tissue engineering devices. It illustrates how porous ceramic structures can be designed using 3DP technology and hence can be beneficial in securing successful tissue ingrowth and subsequent bone regeneration. •• Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials today. 2013;16:496–504. This review brings 3D printed ceramic scaffolds to the forefront of bone tissue engineering devices. It illustrates how porous ceramic structures can be designed using 3DP technology and hence can be beneficial in securing successful tissue ingrowth and subsequent bone regeneration.
23.
Zurück zum Zitat Baino F, Minguella-Canela J, Korkusuz F, Korkusuz P, Kankılıç B, Montealegre MÁ, et al. In vitro assessment of bioactive glass coatings on alumina/zirconia composite implants for potential use in prosthetic applications. Int J Mol Sci. 2019;20:722.CrossRef Baino F, Minguella-Canela J, Korkusuz F, Korkusuz P, Kankılıç B, Montealegre MÁ, et al. In vitro assessment of bioactive glass coatings on alumina/zirconia composite implants for potential use in prosthetic applications. Int J Mol Sci. 2019;20:722.CrossRef
24.
Zurück zum Zitat Baino F, Montealegre MA, Minguella-Canela J, Vitale-Brovarone C. Laser surface texturing of alumina/zirconia composite ceramics for potential use in hip joint prosthesis. Coatings. 2019;9:369.CrossRef Baino F, Montealegre MA, Minguella-Canela J, Vitale-Brovarone C. Laser surface texturing of alumina/zirconia composite ceramics for potential use in hip joint prosthesis. Coatings. 2019;9:369.CrossRef
25.
Zurück zum Zitat Rodriguez CA, Lara-Padilla H, Dean D. Bioceramics for musculoskeletal regenerative medicine: materials and manufacturing process compatibility for synthetic bone grafts and medical devices. In: Ovsianikov a, Yoo J, Mironov V, editors. 3D printing and biofabrication [internet]. Cham: springer international publishing; 2018 [cited 2020 Jan 11]. p. 161–93. Available from: https://doi.org/10.1007/978-3-319-45444-3_22. Rodriguez CA, Lara-Padilla H, Dean D. Bioceramics for musculoskeletal regenerative medicine: materials and manufacturing process compatibility for synthetic bone grafts and medical devices. In: Ovsianikov a, Yoo J, Mironov V, editors. 3D printing and biofabrication [internet]. Cham: springer international publishing; 2018 [cited 2020 Jan 11]. p. 161–93. Available from: https://​doi.​org/​10.​1007/​978-3-319-45444-3_​22.
26.
Zurück zum Zitat Mussano F, Genova T, Serra FG, Carossa M, Munaron L, Carossa S. Nano-pore size of alumina affects Osteoblastic response. Int J Mol Sci. 2018;19:528.CrossRef Mussano F, Genova T, Serra FG, Carossa M, Munaron L, Carossa S. Nano-pore size of alumina affects Osteoblastic response. Int J Mol Sci. 2018;19:528.CrossRef
27.
Zurück zum Zitat Liu W, Wu H, Zhou M, He R, Jiang Q, Wu Z, et al. Fabrication of fine-grained alumina ceramics by a novel process integrating stereolithography and liquid precursor infiltration processing. Ceram Int. 2016;15:17736–41.CrossRef Liu W, Wu H, Zhou M, He R, Jiang Q, Wu Z, et al. Fabrication of fine-grained alumina ceramics by a novel process integrating stereolithography and liquid precursor infiltration processing. Ceram Int. 2016;15:17736–41.CrossRef
28.
Zurück zum Zitat Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dental Mater. 2017;33:477–85.CrossRef Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dental Mater. 2017;33:477–85.CrossRef
29.
Zurück zum Zitat Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int. 2016;15:17290–4.CrossRef Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int. 2016;15:17290–4.CrossRef
30.
Zurück zum Zitat Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, et al. Additive manufacturing of ceramic-based materials. Adv Eng Mater. 2014;16:729–54.CrossRef Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, et al. Additive manufacturing of ceramic-based materials. Adv Eng Mater. 2014;16:729–54.CrossRef
31.
Zurück zum Zitat Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthcare Mater 2019;1701161. Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthcare Mater 2019;1701161.
32.
Zurück zum Zitat Bose S, Sarkar N, Vahabzadeh S. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth. Mater Sci Eng C. 2019;105:110096.CrossRef Bose S, Sarkar N, Vahabzadeh S. Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth. Mater Sci Eng C. 2019;105:110096.CrossRef
33.
Zurück zum Zitat Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, et al. Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration. Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, et al. Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration.
34.
Zurück zum Zitat Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-Oss, or decellularized bone matrix. Tissue Eng A. 2017;23:503–14.CrossRef Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-Oss, or decellularized bone matrix. Tissue Eng A. 2017;23:503–14.CrossRef
35.
Zurück zum Zitat Koski C, Onuike B, Bandyopadhyay A, Bose S. Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Addit Manuf. 2018;24:47–59.PubMedPubMedCentral Koski C, Onuike B, Bandyopadhyay A, Bose S. Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Addit Manuf. 2018;24:47–59.PubMedPubMedCentral
36.
Zurück zum Zitat Sarkar N, Bose S. Liposome-encapsulated Curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11:17184–92.CrossRef Sarkar N, Bose S. Liposome-encapsulated Curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11:17184–92.CrossRef
37.
Zurück zum Zitat •• Bose S, Sarkar N. Natural medicinal compounds in bone tissue engineering. Trends in Biotechnology. This paper provides detailed insight on the beneficial role of combining 3DP ceramic scaffolds and natural medicinal compounds that have osteogenic effects. This kind of novel combinations can provide more efficient and faster bone healing due to augmented effects of porous ceramic scaffolding together with chemical/pharmacological contributions of the natural medicinal compounds. •• Bose S, Sarkar N. Natural medicinal compounds in bone tissue engineering. Trends in Biotechnology. This paper provides detailed insight on the beneficial role of combining 3DP ceramic scaffolds and natural medicinal compounds that have osteogenic effects. This kind of novel combinations can provide more efficient and faster bone healing due to augmented effects of porous ceramic scaffolding together with chemical/pharmacological contributions of the natural medicinal compounds.
38.
Zurück zum Zitat Dumas M, Terriault P, Brailovski V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater Des. 2017;121:383–92.CrossRef Dumas M, Terriault P, Brailovski V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater Des. 2017;121:383–92.CrossRef
39.
Zurück zum Zitat Sheydaeian E, Fishman Z, Vlasea M, Toyserkani E. On the effect of throughout layer thickness variation on properties of additively manufactured cellular titanium structures. Addit Manuf. 2017;18:40–7. Sheydaeian E, Fishman Z, Vlasea M, Toyserkani E. On the effect of throughout layer thickness variation on properties of additively manufactured cellular titanium structures. Addit Manuf. 2017;18:40–7.
40.
Zurück zum Zitat Kuo T-Y, Chin W-H, Chien C-S, Hsieh Y-H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying. Surf Coat Technol. 2019;372:399–409.CrossRef Kuo T-Y, Chin W-H, Chien C-S, Hsieh Y-H. Mechanical and biological properties of graded porous tantalum coatings deposited on titanium alloy implants by vacuum plasma spraying. Surf Coat Technol. 2019;372:399–409.CrossRef
41.
Zurück zum Zitat Hee AC. Wear and corrosion resistance of tantalum coating on titanium alloys for biomedical implant applications. 2017; Hee AC. Wear and corrosion resistance of tantalum coating on titanium alloys for biomedical implant applications. 2017;
42.
Zurück zum Zitat Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. J Mech Behav Biomed Mater. 2017;100:542–51.CrossRef Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. J Mech Behav Biomed Mater. 2017;100:542–51.CrossRef
43.
Zurück zum Zitat Balla VK, Bose S, Davies NM, Bandyopadhyay A. Tantalum—a bioactive metal for implants. Jom. 2010;62:61–4.CrossRef Balla VK, Bose S, Davies NM, Bandyopadhyay A. Tantalum—a bioactive metal for implants. Jom. 2010;62:61–4.CrossRef
44.
Zurück zum Zitat Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit Manuf. 2019;28:259–66.PubMedPubMedCentral Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit Manuf. 2019;28:259–66.PubMedPubMedCentral
45.
Zurück zum Zitat Balla VK, Banerjee S, Bose S, Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010;6:2329–34.CrossRef Balla VK, Banerjee S, Bose S, Bandyopadhyay A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010;6:2329–34.CrossRef
46.
Zurück zum Zitat Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;9:1728–34.CrossRef Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;9:1728–34.CrossRef
47.
Zurück zum Zitat Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–92.CrossRef Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–92.CrossRef
48.
Zurück zum Zitat Ibrahim H, Jahadakbar A, Dehghan A, Moghaddam NS, Amerinatanzi A, Elahinia M. In vitro corrosion assessment of additively manufactured porous NiTi structures for bone fixation applications. Metals. 2018;8:164.CrossRef Ibrahim H, Jahadakbar A, Dehghan A, Moghaddam NS, Amerinatanzi A, Elahinia M. In vitro corrosion assessment of additively manufactured porous NiTi structures for bone fixation applications. Metals. 2018;8:164.CrossRef
49.
Zurück zum Zitat Gorgin Karaji Z, Speirs M, Dadbakhsh S, Kruth J-P, Weinans H, Zadpoor AA, et al. Additively manufactured and surface biofunctionalized porous Nitinol. ACS Appl Mater Interfaces. 2017;9:1293–304.CrossRef Gorgin Karaji Z, Speirs M, Dadbakhsh S, Kruth J-P, Weinans H, Zadpoor AA, et al. Additively manufactured and surface biofunctionalized porous Nitinol. ACS Appl Mater Interfaces. 2017;9:1293–304.CrossRef
Metadaten
Titel
3D Printing for Bone Regeneration
verfasst von
Amit Bandyopadhyay
Indranath Mitra
Susmita Bose
Publikationsdatum
03.08.2020
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 5/2020
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-020-00606-2

Weitere Artikel der Ausgabe 5/2020

The Cannabinoids Effect on Bone Formation and Bone Healing

  • Bone and Joint Pain (P Mantyh and T Schnitzer, Section Editors)

Do Bisphosphonates Alleviate Pain in Children? A Systematic Review

  • Bone and Joint Pain (P Mantyh and T Schnitzer, Section Editors)

Osteocyte Cellular Senescence

  • Osteocytes (J Delgado-Calle and J Klein-Nulend, Section Editors)

Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?

  • Open Access
  • Osteocytes (J Delgado-Calle and J Klein-Nulend, Section Editors)

How to Include Patient-Reported Outcome Measures in Clinical Trials

  • Therapeutics and Medical Management (S Jan De Beur and B Clarke, Section Editors)

Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development

  • Skeletal Development (R Marcucio and JQ Feng, Section Editors)

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie erweitert durch Fallbeispiele, Videos und Abbildungen. Zur Fortbildung und Wissenserweiterung, verfasst und geprüft von Expertinnen und Experten der Gesellschaft für Arthroskopie und Gelenkchirurgie (AGA).


Jetzt entdecken!

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Was sich Patienten mit Frozen Shoulder wünschen

Die Capsulitis adhaesiva des Glenohumeralgelenks, auch als Frozen Shoulder bezeichnet, belastet die Betroffenen weit über die körperlichen Beschwerden hinaus, wie eine italienische Studie ergeben hat.

Restriktive Sauerstoffgabe ohne Vorteil bei schwerem Trauma

Ob schwer verletzte Personen besser restriktiv oder liberal mit Sauerstoff versorgt werden sollten, hat die Arbeitsgruppe der TRAUMOX2-Studie untersucht – mit klarem Ergebnis.

Hinweis auf Zusatznutzen der Anfallsprophylaxe mit Colchicin

Wenn Gichtkranke in den ersten Monaten einer harnsäuresenkenden Therapie eine Anfallsprophylaxe mit Colchicin erhalten, könnten sie davon doppelt profitieren: Ihr Risiko für kardiovaskuläre Komplikationen scheint ebenfalls gesenkt zu werden. 

Wenn orthopädische Patienten psychiatrische Hilfe brauchen

Auch in der orthopädischen Praxis ist man manchmal mit psychischen Problemen konfrontiert. Woran Sie erkennen können, ob Ihre Patientin oder Ihr Patient eigentlich die Hilfe einer anderen Fachdisziplin benötigt, hat ein Team aus Bologna zusammengefasst.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.