Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 10/2018

18.06.2018 | Original Article

3D surface voxel tracing corrector for accurate bone segmentation

verfasst von: Haoyan Guo, Sicong Song, Jinke Wang, Maozu Guo, Yuanzhi Cheng, Yadong Wang, Shinichi Tamura

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images.

Methods

Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation \(\sigma \) to improve the estimation of normal direction. Secondly, we determine an optimal value of \(\sigma \) for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of \(\sigma \) is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of \(\sigma \) is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration.

Results

We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of \(97.62 \pm 0.57\)% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of \(97.34 \pm 0.56\%\), \(98.06\pm 0.58\)%, and \(97.73 \pm 0.47\)% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively.

Conclusion

Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two state-of-the-art methods.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hangartner TN (2007) Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and microct images. J Musculoskelet Neuronal Interact 7(1):9–16PubMed Hangartner TN (2007) Thresholding technique for accurate analysis of density and geometry in QCT, pQCT and microct images. J Musculoskelet Neuronal Interact 7(1):9–16PubMed
2.
Zurück zum Zitat Chan FHY, Lam FK, Zhu H (1998) Adaptive thresholding by variational method. IEEE Trans Image Process 7(3):468–473CrossRefPubMed Chan FHY, Lam FK, Zhu H (1998) Adaptive thresholding by variational method. IEEE Trans Image Process 7(3):468–473CrossRefPubMed
3.
Zurück zum Zitat Burghardt AJ, Kazakia GJ, Majumdar S (2007) A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann Biomed Eng 35(10):1678–1686CrossRefPubMed Burghardt AJ, Kazakia GJ, Majumdar S (2007) A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Ann Biomed Eng 35(10):1678–1686CrossRefPubMed
4.
Zurück zum Zitat Cheng YZ, Zhou SJ, Wang YD, Guo CY, Bai J, Tamura S (2013) Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recogn 46(11):2969–2984CrossRef Cheng YZ, Zhou SJ, Wang YD, Guo CY, Bai J, Tamura S (2013) Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recogn 46(11):2969–2984CrossRef
5.
Zurück zum Zitat Mishra AK, Fieguth PW, Clausi DA (2011) Decoupled active contour (DAC) for boundary detection. IEEE Trans Pattern Anal Mach Intell 33(2):310–324CrossRefPubMed Mishra AK, Fieguth PW, Clausi DA (2011) Decoupled active contour (DAC) for boundary detection. IEEE Trans Pattern Anal Mach Intell 33(2):310–324CrossRefPubMed
6.
Zurück zum Zitat Xu MH, Thompson PM, Toga AW (2004) An adaptive level set segmentation on a triangulated mesh. IEEE Trans Med Imaging 23(2):191–201CrossRefPubMed Xu MH, Thompson PM, Toga AW (2004) An adaptive level set segmentation on a triangulated mesh. IEEE Trans Med Imaging 23(2):191–201CrossRefPubMed
7.
Zurück zum Zitat Adiga PSU, Chaudhuri BB (2001) An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Pattern Recogn 34(7):1449–1458CrossRef Adiga PSU, Chaudhuri BB (2001) An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Pattern Recogn 34(7):1449–1458CrossRef
8.
Zurück zum Zitat Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield SK (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458CrossRefPubMed Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield SK (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458CrossRefPubMed
9.
Zurück zum Zitat Yokota F, Okada T, Takao M, Sugano N, Tada Y, Tomiyama N, Sato Y (2013) Automated ct segmentation of diseased hip using hierarchical and conditional statistical shape models. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 190–197 Yokota F, Okada T, Takao M, Sugano N, Tada Y, Tomiyama N, Sato Y (2013) Automated ct segmentation of diseased hip using hierarchical and conditional statistical shape models. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 190–197
10.
Zurück zum Zitat Chandra SS, Xia Y, Engstrom C, Crozier S, Schwarz R, Fripp J (2014) Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med Image Anal 18(3):567–578CrossRefPubMed Chandra SS, Xia Y, Engstrom C, Crozier S, Schwarz R, Fripp J (2014) Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med Image Anal 18(3):567–578CrossRefPubMed
11.
Zurück zum Zitat Schmid J, Kim J, Magnenat Thalmann N (2011) Robust statistical shape models for mri bone segmentation in presence of small field of view. Med Image Anal 50:155–168CrossRef Schmid J, Kim J, Magnenat Thalmann N (2011) Robust statistical shape models for mri bone segmentation in presence of small field of view. Med Image Anal 50:155–168CrossRef
12.
Zurück zum Zitat Lindner C, Thiagarajah S, Wilkinson JM, arcOGEN Consortium, WallisG, Cootes TF (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans Med Imag32(8):1462–1472CrossRefPubMed Lindner C, Thiagarajah S, Wilkinson JM, arcOGEN Consortium, WallisG, Cootes TF (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans Med Imag32(8):1462–1472CrossRefPubMed
13.
Zurück zum Zitat Lamecker H, Seeba M, Hege HC, Deuflhard P (2004) A 3d statistical shape model of the pelvic bone for segmentation. In: Proceedings of SPIE 2004, vol 5370. Fitzpatrick, pp 1341C–1351 Lamecker H, Seeba M, Hege HC, Deuflhard P (2004) A 3d statistical shape model of the pelvic bone for segmentation. In: Proceedings of SPIE 2004, vol 5370. Fitzpatrick, pp 1341C–1351
14.
Zurück zum Zitat Snel JG, Venema HW, Grimberge CA (2002) Deformable triangular surfaces using fast 1-D radial lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans Med Imaging 21(8):888–903CrossRefPubMed Snel JG, Venema HW, Grimberge CA (2002) Deformable triangular surfaces using fast 1-D radial lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans Med Imaging 21(8):888–903CrossRefPubMed
15.
Zurück zum Zitat Sebastian TB, Tek H, Crisco JJ, Kimia BB (2003) Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7(1):21–45CrossRefPubMed Sebastian TB, Tek H, Crisco JJ, Kimia BB (2003) Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7(1):21–45CrossRefPubMed
16.
Zurück zum Zitat Mohammad AA, Rasoulian A, Seitel A, Darras K, Wilson D, John P, Pichora D, Mousavi P, Rohling R, Abolmaesumi P (2016) Automatic segmentation of wrist bones in CT using a statistical wrist shape + pose models. IEEE Trans Med Imaging 35(8):1789–1801CrossRef Mohammad AA, Rasoulian A, Seitel A, Darras K, Wilson D, John P, Pichora D, Mousavi P, Rohling R, Abolmaesumi P (2016) Automatic segmentation of wrist bones in CT using a statistical wrist shape + pose models. IEEE Trans Med Imaging 35(8):1789–1801CrossRef
17.
Zurück zum Zitat Yao WG, Abolmaesumi P, Greenspan M, Ellis RE (2005) An estimation/correction algorithm for detecting bone edges in CT images. IEEE Trans Med Imaging 24(8):997–1010CrossRefPubMed Yao WG, Abolmaesumi P, Greenspan M, Ellis RE (2005) An estimation/correction algorithm for detecting bone edges in CT images. IEEE Trans Med Imaging 24(8):997–1010CrossRefPubMed
18.
Zurück zum Zitat Qu XQ, Li XB (1996) A 3D surface tracking algorithm. Comput Vis Image Underst 64(1):147–156CrossRef Qu XQ, Li XB (1996) A 3D surface tracking algorithm. Comput Vis Image Underst 64(1):147–156CrossRef
19.
Zurück zum Zitat Zoroofi R, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Tamura S (2004) Automated segmentation of acetabulum and femoral head from 3-DCT images. IEEE Trans Inf Technol Biomed 7(4):329–343CrossRef Zoroofi R, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Tamura S (2004) Automated segmentation of acetabulum and femoral head from 3-DCT images. IEEE Trans Inf Technol Biomed 7(4):329–343CrossRef
20.
Zurück zum Zitat Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
21.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern 64(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern 64(1):62–66CrossRef
22.
Zurück zum Zitat Gonzalez R, Woods R (eds) (2002) Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle River Gonzalez R, Woods R (eds) (2002) Digital Image Processing, 2nd edn. Prentice-Hall, Upper Saddle River
23.
Zurück zum Zitat Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRef Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRef
24.
Zurück zum Zitat Shi CF, Cheng YZ, Liu F, Wang YD, Bai J, Tamura S (2016) A hierarchical local region-based sparse shape composition for liver segmentation in ct scans. Pattern Recogn 50:88–106CrossRef Shi CF, Cheng YZ, Liu F, Wang YD, Bai J, Tamura S (2016) A hierarchical local region-based sparse shape composition for liver segmentation in ct scans. Pattern Recogn 50:88–106CrossRef
25.
Zurück zum Zitat Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S (2017) Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal 38:30–49CrossRefPubMed Shi C, Cheng Y, Wang J, Wang Y, Mori K, Tamura S (2017) Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal 38:30–49CrossRefPubMed
26.
Zurück zum Zitat Suk HI, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 26(3):569–582CrossRef Suk HI, Lee SW, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 26(3):569–582CrossRef
27.
Zurück zum Zitat Ciompi F, de Hoop SJ, van Riel Band, Chung K, Scholten ET (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202CrossRefPubMed Ciompi F, de Hoop SJ, van Riel Band, Chung K, Scholten ET (2015) Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal 26(1):195–202CrossRefPubMed
Metadaten
Titel
3D surface voxel tracing corrector for accurate bone segmentation
verfasst von
Haoyan Guo
Sicong Song
Jinke Wang
Maozu Guo
Yuanzhi Cheng
Yadong Wang
Shinichi Tamura
Publikationsdatum
18.06.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 10/2018
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1804-9

Weitere Artikel der Ausgabe 10/2018

International Journal of Computer Assisted Radiology and Surgery 10/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.