Skip to main content
Erschienen in: Tumor Biology 4/2015

01.04.2015 | Research Article

7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction

verfasst von: Farid Keramati, Ehsan Seyedjafari, Parviz Fallah, Masoud Soleimani, Hossein Ghanbarian

Erschienen in: Tumor Biology | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

7SK small nuclear RNA (snRNA) is a 331–333-bp non-coding RNA, which recruits HEXIM 1/2 protein to inhibit positive elongation factor b (P-TEFb) activity. P-TEFb is an essential factor in alleviating promoter-proximal paused RNA polymerase II (Pol II) and initiating the productive elongation phase of gene transcription. Without this protein, Pol II will remain in its hypophosphorylated state, and no transcription occurs. In this study, we inhibited P-TEFb activity by over-expressing 7SK snRNA in human embryonic kidney (HEK) 293T cancer cell line. This inhibition led to a significant decrease in cell viability, which can be due to the transcription inhibition. Moreover, 7SK snRNA over-expression promoted apoptosis in cancerous cells. Our results suggest 7SK snRNA as a potential endogenous anti-cancer agent, and to the best of our knowledge, this is the first study that uses a long non-coding RNA’s over-expression against cancer cell growth and proliferation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Pagani M et al. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev. 2013;253(1):82–96.CrossRefPubMed Pagani M et al. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev. 2013;253(1):82–96.CrossRefPubMed
5.
6.
8.
Zurück zum Zitat Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.CrossRefPubMed Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.CrossRefPubMed
9.
Zurück zum Zitat Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol. 2014;26:10–8.CrossRefPubMed Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol. 2014;26:10–8.CrossRefPubMed
11.
Zurück zum Zitat Schickel R et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–74.CrossRefPubMed Schickel R et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. 2008;27(45):5959–74.CrossRefPubMed
12.
Zurück zum Zitat Yang BF, Lu YJ, Wang ZG. MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 2009;36(10):951–60.CrossRefPubMed Yang BF, Lu YJ, Wang ZG. MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 2009;36(10):951–60.CrossRefPubMed
13.
Zurück zum Zitat Derrien T et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.CrossRefPubMedPubMedCentral Derrien T et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Gutschner T et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.CrossRefPubMed Gutschner T et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9.CrossRefPubMed
18.
Zurück zum Zitat Yang G, Lu X, and Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014. Yang G, Lu X, and Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014.
19.
Zurück zum Zitat Wassarman DA, Steitz JA. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol. 1991;11(7):3432–45.CrossRefPubMedPubMedCentral Wassarman DA, Steitz JA. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol. 1991;11(7):3432–45.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Krueger BJ et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 2008;36(7):2219–29.CrossRefPubMedPubMedCentral Krueger BJ et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res. 2008;36(7):2219–29.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Jeronimo C et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007;27(2):262–74.CrossRefPubMedPubMedCentral Jeronimo C et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell. 2007;27(2):262–74.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nguyen VT et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414(6861):322–5.CrossRefPubMed Nguyen VT et al. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001;414(6861):322–5.CrossRefPubMed
23.
Zurück zum Zitat Yang Z et al. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001;414(6861):317–22.CrossRefPubMed Yang Z et al. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001;414(6861):317–22.CrossRefPubMed
24.
Zurück zum Zitat Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA. 2012;3(1):92–103.CrossRefPubMed Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA. 2012;3(1):92–103.CrossRefPubMed
26.
Zurück zum Zitat Li Q et al. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem. 2005;280(31):28819–26.CrossRefPubMed Li Q et al. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem. 2005;280(31):28819–26.CrossRefPubMed
29.
Zurück zum Zitat Kota SK, Balasubramanian S. Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today. 2010;15(17–18):733–40.CrossRefPubMed Kota SK, Balasubramanian S. Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today. 2010;15(17–18):733–40.CrossRefPubMed
30.
Zurück zum Zitat Vitiello M, Tuccoli A, and Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr). 2014. Vitiello M, Tuccoli A, and Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr). 2014.
31.
Zurück zum Zitat Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.CrossRefPubMedPubMedCentral Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Huang J et al. Lentivirus-mediated RNA interference targeting the long noncoding RNA HOTAIR inhibits proliferation and invasion of endometrial carcinoma cells in vitro and in vivo. Int J Gynecol Cancer. 2014;24(4):635–42.CrossRefPubMed Huang J et al. Lentivirus-mediated RNA interference targeting the long noncoding RNA HOTAIR inhibits proliferation and invasion of endometrial carcinoma cells in vitro and in vivo. Int J Gynecol Cancer. 2014;24(4):635–42.CrossRefPubMed
35.
36.
Zurück zum Zitat Dong X et al. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res. 2004;32(Web Server issue):W660-4.PubMed Dong X et al. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic Acids Res. 2004;32(Web Server issue):W660-4.PubMed
37.
Zurück zum Zitat Pfeifer A et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11450–5.CrossRefPubMedPubMedCentral Pfeifer A et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A. 2001;98(20):11450–5.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMed
39.
Zurück zum Zitat Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.CrossRefPubMedPubMedCentral Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001;276(34):31793–9.CrossRefPubMed Chao SH, Price DH. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem. 2001;276(34):31793–9.CrossRefPubMed
44.
Zurück zum Zitat Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.CrossRefPubMed Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.CrossRefPubMed
45.
Zurück zum Zitat Yamada T et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell. 2006;21(2):227–37.CrossRefPubMed Yamada T et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell. 2006;21(2):227–37.CrossRefPubMed
46.
47.
Zurück zum Zitat Hofmeister CC et al. A phase I trial of flavopiridol in relapsed multiple myeloma. Cancer Chemother Pharmacol. 2014;73(2):249–57.CrossRefPubMed Hofmeister CC et al. A phase I trial of flavopiridol in relapsed multiple myeloma. Cancer Chemother Pharmacol. 2014;73(2):249–57.CrossRefPubMed
48.
Zurück zum Zitat Mizrahi A et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med. 2009;7:69.CrossRefPubMedPubMedCentral Mizrahi A et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med. 2009;7:69.CrossRefPubMedPubMedCentral
Metadaten
Titel
7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction
verfasst von
Farid Keramati
Ehsan Seyedjafari
Parviz Fallah
Masoud Soleimani
Hossein Ghanbarian
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 4/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2907-8

Weitere Artikel der Ausgabe 4/2015

Tumor Biology 4/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.