Skip to main content
Erschienen in: Brain Topography 1/2019

04.08.2018 | Original Paper

A Blind Module Identification Approach for Predicting Effective Connectivity Within Brain Dynamical Subnetworks

verfasst von: Fadi N. Karameh, Ziad Nahas

Erschienen in: Brain Topography | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Model-based network discovery measures, such as the brain effective connectivity, require fitting of generative process models to measurements obtained from key areas across the network. For distributed dynamic phenomena, such as generalized seizures and slow-wave sleep, studying effective connectivity from real-time recordings is significantly complicated since (i) outputs from only a subnetwork can be practically measured, and (ii) exogenous subnetwork inputs are unobservable. Model fitting, therefore, constitutes a challenging blind module identification or model inversion problem for finding both the parameters and the many unknown inputs of the subnetwork. We herein propose a novel estimation framework for identifying nonlinear dynamic subnetworks in the case of slowly-varying, otherwise unknown local inputs. Starting with approximate predictions obtained using Cubature Kalman filtering, residuals of local output predictions are utilized to improve upon local input estimates. The algorithm performance is tested on both simulated and clinical EEG of induced seizures under electroconvulsive therapy (ECT). For the simulated network, the algorithm significantly boosted the estimation accuracy for inputs and connections from noisy EEG. For the clinical data, the algorithm predicted increased subnetwork inputs during the pre-stimulus anesthesia condition. Importantly, it predicted an increased frontocentral connectivity during the generalized seizure that is commensurate with electrode placement and that corroborates the clinical hypothesis of increased frontal focality of therapeutic ECT seizures. The proposed framework can be extended to account for several input configurations and can in principle be applied to study effective connectivity within brain subnetworks defined at the microscale (cortical lamina interaction) or at the macroscale (sensory integration).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ackermann RF, Engel J, Baxter L (1986) Positron emission tomography and autoradiographic studies of glucose utilization following electroconvulsive seizures in humans and rats. Annal N Y Acad Sci 462(1):263–269CrossRef Ackermann RF, Engel J, Baxter L (1986) Positron emission tomography and autoradiographic studies of glucose utilization following electroconvulsive seizures in humans and rats. Annal N Y Acad Sci 462(1):263–269CrossRef
Zurück zum Zitat Ambrogioni L, Hinne M, Van Gerven M, Maris E (2017) Gp cake: effective brain connectivity with causal kernels. In: Advances in Neural Information Processing Systems, pp 951–960 Ambrogioni L, Hinne M, Van Gerven M, Maris E (2017) Gp cake: effective brain connectivity with causal kernels. In: Advances in Neural Information Processing Systems, pp 951–960
Zurück zum Zitat Arasaratnam I, Haykin S (2009) Cubature kalman filters. IEEE Trans Autom Control 54(6):1254–1269CrossRef Arasaratnam I, Haykin S (2009) Cubature kalman filters. IEEE Trans Autom Control 54(6):1254–1269CrossRef
Zurück zum Zitat Arasaratnam I, Haykin S, Hurd TR (2010) Cubature kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans Signal Process 58(10):4977–4993CrossRef Arasaratnam I, Haykin S, Hurd TR (2010) Cubature kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans Signal Process 58(10):4977–4993CrossRef
Zurück zum Zitat Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M, Laureys S, Seth AK (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS ONE 7(1):e29–072CrossRef Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M, Laureys S, Seth AK (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS ONE 7(1):e29–072CrossRef
Zurück zum Zitat Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ (2015) A dcm study of spectral asymmetries in feedforward and feedback connections between visual areas v1 and v4 in the monkey. Neuroimage 108:460–475CrossRefPubMedPubMedCentral Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ (2015) A dcm study of spectral asymmetries in feedforward and feedback connections between visual areas v1 and v4 in the monkey. Neuroimage 108:460–475CrossRefPubMedPubMedCentral
Zurück zum Zitat Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90(5):2987–3000CrossRefPubMed Beierlein M, Gibson JR, Connors BW (2003) Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 90(5):2987–3000CrossRefPubMed
Zurück zum Zitat Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRef Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRef
Zurück zum Zitat Bielczyk NZ, Llera A, Buitelaar JK, Glennon JC, Beckmann CF (2017) Increasing robustness of pairwise methods for effective connectivity in magnetic resonance imaging by using fractional moment series of bold signal distributions. arXiv:160608724v3 Bielczyk NZ, Llera A, Buitelaar JK, Glennon JC, Beckmann CF (2017) Increasing robustness of pairwise methods for effective connectivity in magnetic resonance imaging by using fractional moment series of bold signal distributions. arXiv:​160608724v3
Zurück zum Zitat Cammarota M, Losi G, Chiavegato A, Zonta M, Carmignoto G (2013) Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J Physiol 591(4):807–822CrossRefPubMed Cammarota M, Losi G, Chiavegato A, Zonta M, Carmignoto G (2013) Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J Physiol 591(4):807–822CrossRefPubMed
Zurück zum Zitat Correa N, Adalı T, Calhoun VD (2007) Performance of blind source separation algorithms for fmri analysis using a group ica method. Magn Reson Imaging 25(5):684–694CrossRefPubMed Correa N, Adalı T, Calhoun VD (2007) Performance of blind source separation algorithms for fmri analysis using a group ica method. Magn Reson Imaging 25(5):684–694CrossRefPubMed
Zurück zum Zitat Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17CrossRef Cruikshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzalez AN, Elmaleh M, Connors BW (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci 32(49):17CrossRef
Zurück zum Zitat Crunelli V, David F, Lőrincz ML, Hughes SW (2015) The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol 31:72–80CrossRefPubMed Crunelli V, David F, Lőrincz ML, Hughes SW (2015) The thalamocortical network as a single slow wave-generating unit. Curr Opin Neurobiol 31:72–80CrossRefPubMed
Zurück zum Zitat Damaraju E, Allen E, Belger A, Ford J, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin S, Preda A et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage 5:298–308CrossRefPubMed Damaraju E, Allen E, Belger A, Ford J, McEwen S, Mathalon D, Mueller B, Pearlson G, Potkin S, Preda A et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage 5:298–308CrossRefPubMed
Zurück zum Zitat Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2015) Errors-in-variables identification in dynamic networks-consistency results for an instrumental variable approach. Automatica 62:39–50CrossRef Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2015) Errors-in-variables identification in dynamic networks-consistency results for an instrumental variable approach. Automatica 62:39–50CrossRef
Zurück zum Zitat Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2016) Identification of dynamic models in complex networks with prediction error methods: predictor input selection. IEEE Trans Autom Control 61(4):937–952CrossRef Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2016) Identification of dynamic models in complex networks with prediction error methods: predictor input selection. IEEE Trans Autom Control 61(4):937–952CrossRef
Zurück zum Zitat Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2013) Predictor input selection for two stage identification in dynamic networks. In: Control Conference (ECC), 2013 European, IEEE, pp 1422–1427 Dankers A, Van den Hof PM, Bombois X, Heuberger PS (2013) Predictor input selection for two stage identification in dynamic networks. In: Control Conference (ECC), 2013 European, IEEE, pp 1422–1427
Zurück zum Zitat David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage 30(4):1255–1272CrossRefPubMed David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage 30(4):1255–1272CrossRefPubMed
Zurück zum Zitat De Curtis M, Gnatkovsky V (2009) Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 50(12):2514–2525CrossRefPubMed De Curtis M, Gnatkovsky V (2009) Reevaluating the mechanisms of focal ictogenesis: the role of low-voltage fast activity. Epilepsia 50(12):2514–2525CrossRefPubMed
Zurück zum Zitat Deng ZD, Lisanby SH, Peterchev AV (2011) Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J Neural Eng 8(1):016007CrossRefPubMedPubMedCentral Deng ZD, Lisanby SH, Peterchev AV (2011) Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J Neural Eng 8(1):016007CrossRefPubMedPubMedCentral
Zurück zum Zitat Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4(9):739CrossRefPubMed Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4(9):739CrossRefPubMed
Zurück zum Zitat Diez I, Bonifazi P, Escudero I, Mateos B, Muñoz MA, Stramaglia S, Cortes JM (2015) A novel brain partition highlights the modular skeleton shared by structure and function. Sci Rep 5(srep10):532 Diez I, Bonifazi P, Escudero I, Mateos B, Muñoz MA, Stramaglia S, Cortes JM (2015) A novel brain partition highlights the modular skeleton shared by structure and function. Sci Rep 5(srep10):532
Zurück zum Zitat Dijkstra N, Zeidman P, Ondobaka S, Gerven MA, Friston K (2017) Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci Rep 7(1):5677CrossRefPubMedPubMedCentral Dijkstra N, Zeidman P, Ondobaka S, Gerven MA, Friston K (2017) Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci Rep 7(1):5677CrossRefPubMedPubMedCentral
Zurück zum Zitat Dubeau S, Havlicek M, Beaumont E, Ferland G, Lesage F, Pouliot P (2012) Neurovascular deconvolution of optical signals as a proxy for the true neuronal inputs. J Neurosci Methods 210(2):247–258CrossRefPubMed Dubeau S, Havlicek M, Beaumont E, Ferland G, Lesage F, Pouliot P (2012) Neurovascular deconvolution of optical signals as a proxy for the true neuronal inputs. J Neurosci Methods 210(2):247–258CrossRefPubMed
Zurück zum Zitat Enev M, McNally KA, Varghese G, Zubal IG, Ostroff RB, Blumenfeld H (2007) Imaging onset and propagation of ect-induced seizures. Epilepsia 48(2):238–244CrossRefPubMed Enev M, McNally KA, Varghese G, Zubal IG, Ostroff RB, Blumenfeld H (2007) Imaging onset and propagation of ect-induced seizures. Epilepsia 48(2):238–244CrossRefPubMed
Zurück zum Zitat Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704CrossRefPubMed Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704CrossRefPubMed
Zurück zum Zitat Everitt N (2017) Module identification in dynamic networks: parametric and empirical bayes methods. PhD thesis, KTH Royal Institute of Technology Everitt N (2017) Module identification in dynamic networks: parametric and empirical bayes methods. PhD thesis, KTH Royal Institute of Technology
Zurück zum Zitat Everitt N, Bottegal G, Rojas CR, Hjalmarsson H (2016) Identification of modules in dynamic networks: an empirical bayes approach. In: 2016 IEEE 55th Conference on Decision and control (CDC), IEEE, pp 4612–4617 Everitt N, Bottegal G, Rojas CR, Hjalmarsson H (2016) Identification of modules in dynamic networks: an empirical bayes approach. In: 2016 IEEE 55th Conference on Decision and control (CDC), IEEE, pp 4612–4617
Zurück zum Zitat Fontolan L, Morillon B, Liegeois-Chauvel C, Giraud AL (2014) The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat Commun 5:4694CrossRefPubMedPubMedCentral Fontolan L, Morillon B, Liegeois-Chauvel C, Giraud AL (2014) The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat Commun 5:4694CrossRefPubMedPubMedCentral
Zurück zum Zitat Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370CrossRefPubMed Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370CrossRefPubMed
Zurück zum Zitat Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, Buhmann JM, Stephan KE (2018) A generative model of whole-brain effective connectivity. NeuroImage 179:505–529CrossRefPubMed Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, Buhmann JM, Stephan KE (2018) A generative model of whole-brain effective connectivity. NeuroImage 179:505–529CrossRefPubMed
Zurück zum Zitat Freestone DR, Karoly PJ, Nešić D, Aram P, Cook MJ, Grayden DB (2014) Estimation of effective connectivity via data-driven neural modeling. Front Neurosci 8:383CrossRefPubMedPubMedCentral Freestone DR, Karoly PJ, Nešić D, Aram P, Cook MJ, Grayden DB (2014) Estimation of effective connectivity via data-driven neural modeling. Front Neurosci 8:383CrossRefPubMedPubMedCentral
Zurück zum Zitat Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRefPubMed Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRefPubMed
Zurück zum Zitat Friston K, Moran R, Seth AK (2013) Analysing connectivity with granger causality and dynamic causal modelling. Curr Opin Neurobiol 23(2):172–178CrossRefPubMedPubMedCentral Friston K, Moran R, Seth AK (2013) Analysing connectivity with granger causality and dynamic causal modelling. Curr Opin Neurobiol 23(2):172–178CrossRefPubMedPubMedCentral
Zurück zum Zitat Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM (2008) The functional anatomy of the mmn: a dcm study of the roving paradigm. Neuroimage 42(2):936–944CrossRefPubMedPubMedCentral Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM (2008) The functional anatomy of the mmn: a dcm study of the roving paradigm. Neuroimage 42(2):936–944CrossRefPubMedPubMedCentral
Zurück zum Zitat Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magn Reson Imaging 21(10):1251–1261CrossRefPubMed Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directed cortical interactions in time-resolved fmri data using vector autoregressive modeling and granger causality mapping. Magn Reson Imaging 21(10):1251–1261CrossRefPubMed
Zurück zum Zitat Grover S, Mattoo SK, Gupta N (2005) Theories on mechanism of action of electroconvulsive therapy. German J Psychiatry 8:70–84 Grover S, Mattoo SK, Gupta N (2005) Theories on mechanism of action of electroconvulsive therapy. German J Psychiatry 8:70–84
Zurück zum Zitat Havlicek M, Jan J, Brazdil M, Calhoun VD (2010) Dynamic granger causality based on kalman filter for evaluation of functional network connectivity in fmri data. Neuroimage 53(1):65–77CrossRefPubMedPubMedCentral Havlicek M, Jan J, Brazdil M, Calhoun VD (2010) Dynamic granger causality based on kalman filter for evaluation of functional network connectivity in fmri data. Neuroimage 53(1):65–77CrossRefPubMedPubMedCentral
Zurück zum Zitat Havlicek M, Friston KJ, Jan J, Brazdil M, Calhoun VD (2011) Dynamic modeling of neuronal responses in fmri using cubature kalman filtering. NeuroImage 56(4):2109–2128CrossRefPubMedPubMedCentral Havlicek M, Friston KJ, Jan J, Brazdil M, Calhoun VD (2011) Dynamic modeling of neuronal responses in fmri using cubature kalman filtering. NeuroImage 56(4):2109–2128CrossRefPubMedPubMedCentral
Zurück zum Zitat Hilgetag CC, Kötter R, Stephan KE, Sporns O (2002) Computational methods for the analysis of brain connectivity. In: Ascoli G (ed) Computational neuroanatomy. Springer, New York, pp 295–335CrossRef Hilgetag CC, Kötter R, Stephan KE, Sporns O (2002) Computational methods for the analysis of brain connectivity. In: Ascoli G (ed) Computational neuroanatomy. Springer, New York, pp 295–335CrossRef
Zurück zum Zitat Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci 104(24):10240–10245CrossRefPubMed Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci 104(24):10240–10245CrossRefPubMed
Zurück zum Zitat Hu L, Zhang Z, Hu Y (2012) A time-varying source connectivity approach to reveal human somatosensory information processing. Neuroimage 62(1):217–228CrossRefPubMed Hu L, Zhang Z, Hu Y (2012) A time-varying source connectivity approach to reveal human somatosensory information processing. Neuroimage 62(1):217–228CrossRefPubMed
Zurück zum Zitat Hyafil A, Giraud AL, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38(11):725–740CrossRefPubMed Hyafil A, Giraud AL, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38(11):725–740CrossRefPubMed
Zurück zum Zitat Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3):626–634CrossRefPubMed Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3):626–634CrossRefPubMed
Zurück zum Zitat Jann K, Kottlow M, Dierks T, Boesch C, Koenig T (2010) Topographic electrophysiological signatures of fmri resting state networks. PLoS ONE 5(9):e12–945CrossRef Jann K, Kottlow M, Dierks T, Boesch C, Koenig T (2010) Topographic electrophysiological signatures of fmri resting state networks. PLoS ONE 5(9):e12–945CrossRef
Zurück zum Zitat Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73(4):357–366CrossRefPubMed Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73(4):357–366CrossRefPubMed
Zurück zum Zitat Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27(40):10751–10764CrossRef Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27(40):10751–10764CrossRef
Zurück zum Zitat Karameh FN, Awada M, Mourad F, Zahed K, Abou-Faycal IC, Nahas Z (2014) Modeling of neuronal population activation under electroconvulsive therapy. In: Biosignals, pp 229–238 Karameh FN, Awada M, Mourad F, Zahed K, Abou-Faycal IC, Nahas Z (2014) Modeling of neuronal population activation under electroconvulsive therapy. In: Biosignals, pp 229–238
Zurück zum Zitat Kiebel SJ, Garrido MI, Moran R, Chen CC, Friston KJ (2009) Dynamic causal modeling for EEG and MEG. Hum Brain Mapp 30(6):1866–1876CrossRefPubMed Kiebel SJ, Garrido MI, Moran R, Chen CC, Friston KJ (2009) Dynamic causal modeling for EEG and MEG. Hum Brain Mapp 30(6):1866–1876CrossRefPubMed
Zurück zum Zitat Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA (2009) The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn 18(4):1069–1078CrossRefPubMed Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA (2009) The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn 18(4):1069–1078CrossRefPubMed
Zurück zum Zitat Lee WH, Deng ZD, Kim TS, Laine AF, Lisanby SH, Peterchev AV (2012) Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 59(3):2110–2123CrossRefPubMed Lee WH, Deng ZD, Kim TS, Laine AF, Lisanby SH, Peterchev AV (2012) Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity. Neuroimage 59(3):2110–2123CrossRefPubMed
Zurück zum Zitat Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA (2013) Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. J Am Soc Anesthesiol 118(6):1264–1275CrossRef Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA (2013) Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. J Am Soc Anesthesiol 118(6):1264–1275CrossRef
Zurück zum Zitat Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K (2011) Generalised filtering and stochastic DCM for fMRI. Neuroimage 58(2):442–457CrossRefPubMed Li B, Daunizeau J, Stephan KE, Penny W, Hu D, Friston K (2011) Generalised filtering and stochastic DCM for fMRI. Neuroimage 58(2):442–457CrossRefPubMed
Zurück zum Zitat Ljung L (1999) System identification, Wiley Encyclopedia of Electrical and Electronics Engineering Ljung L (1999) System identification, Wiley Encyclopedia of Electrical and Electronics Engineering
Zurück zum Zitat Madi MK, Karameh FN (2017) Hybrid cubature kalman filtering for identifying nonlinear models from sampled recording: estimation of neuronal dynamics. PLoS ONE 12(7):1–49CrossRef Madi MK, Karameh FN (2017) Hybrid cubature kalman filtering for identifying nonlinear models from sampled recording: estimation of neuronal dynamics. PLoS ONE 12(7):1–49CrossRef
Zurück zum Zitat Madi MK, Karameh FN (2018) Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling. J Neural Eng 15(4):046028CrossRefPubMed Madi MK, Karameh FN (2018) Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling. J Neural Eng 15(4):046028CrossRefPubMed
Zurück zum Zitat Mankad MV, Beyer JL, Weiner RD, Krystal A (2010) Clinical manual of electroconvulsive therapy. American Psychiatric Pub, Washington, DC Mankad MV, Beyer JL, Weiner RD, Krystal A (2010) Clinical manual of electroconvulsive therapy. American Psychiatric Pub, Washington, DC
Zurück zum Zitat Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793CrossRefPubMed Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793CrossRefPubMed
Zurück zum Zitat McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20(1):185–215CrossRef McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20(1):185–215CrossRef
Zurück zum Zitat Merkl A, Heuser I, Bajbouj M (2009) Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations. Experim Neurol 219(1):20–26CrossRef Merkl A, Heuser I, Bajbouj M (2009) Antidepressant electroconvulsive therapy: mechanism of action, recent advances and limitations. Experim Neurol 219(1):20–26CrossRef
Zurück zum Zitat Moran RJ, Kiebel SJ, Stephan K, Reilly R, Daunizeau J, Friston KJ (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage 37(3):706–720CrossRefPubMedPubMedCentral Moran RJ, Kiebel SJ, Stephan K, Reilly R, Daunizeau J, Friston KJ (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage 37(3):706–720CrossRefPubMedPubMedCentral
Zurück zum Zitat Moran RJ, Stephan KE, Seidenbecher T, Pape HC, Dolan RJ, Friston KJ (2009) Dynamic causal models of steady-state responses. Neuroimage 44(3):796–811CrossRefPubMedPubMedCentral Moran RJ, Stephan KE, Seidenbecher T, Pape HC, Dolan RJ, Friston KJ (2009) Dynamic causal models of steady-state responses. Neuroimage 44(3):796–811CrossRefPubMedPubMedCentral
Zurück zum Zitat Moscrip TD, Terrace HS, Sackeim HA, Lisanby SH (2006) Randomized controlled trial of the cognitive side-effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS). Int J Neuropsychopharmacol 9(1):1–11CrossRefPubMed Moscrip TD, Terrace HS, Sackeim HA, Lisanby SH (2006) Randomized controlled trial of the cognitive side-effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS). Int J Neuropsychopharmacol 9(1):1–11CrossRefPubMed
Zurück zum Zitat Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related eeg responses and beyond. Magn Reson Imaging 26(7):1041–1054CrossRefPubMed Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related eeg responses and beyond. Magn Reson Imaging 26(7):1041–1054CrossRefPubMed
Zurück zum Zitat Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000–190CrossRef Müller-Linow M, Hilgetag CC, Hütt MT (2008) Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 4(9):e1000–190CrossRef
Zurück zum Zitat Nahas Z, Short B, Burns C, Archer M, Schmidt M, Prudic J, Nobler MS, Devanand D, Fitzsimons L, Lisanby SH et al (2013) A feasibility study of a new method for electrically producing seizures in man: focal electrically administered seizure therapy. Brain Stimul 6(3):403–408CrossRefPubMed Nahas Z, Short B, Burns C, Archer M, Schmidt M, Prudic J, Nobler MS, Devanand D, Fitzsimons L, Lisanby SH et al (2013) A feasibility study of a new method for electrically producing seizures in man: focal electrically administered seizure therapy. Brain Stimul 6(3):403–408CrossRefPubMed
Zurück zum Zitat Nobler MS, Sackeim HA, Prohovnik I, Moeller JR, Mukherjee S, Schnur DB, Prudic J, Devanand D (1994) Regional cerebral blood flow in mood disorders, III: treatment and clinical response. Arch General Psychiatry 51(11):884–897CrossRef Nobler MS, Sackeim HA, Prohovnik I, Moeller JR, Mukherjee S, Schnur DB, Prudic J, Devanand D (1994) Regional cerebral blood flow in mood disorders, III: treatment and clinical response. Arch General Psychiatry 51(11):884–897CrossRef
Zurück zum Zitat Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell C, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ECT. Am J Psychiatry 158(2):305–308CrossRefPubMed Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell C, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ECT. Am J Psychiatry 158(2):305–308CrossRefPubMed
Zurück zum Zitat Pagerols J, Rojo J (2009) Electrophysiological mechanisms of action of electroconvulsive therapy. Actas Esp Psiquiatr 37(6):343–351PubMed Pagerols J, Rojo J (2009) Electrophysiological mechanisms of action of electroconvulsive therapy. Actas Esp Psiquiatr 37(6):343–351PubMed
Zurück zum Zitat Palva S, Palva JM (2012) Discovering oscillatory interaction networks with m/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230CrossRef Palva S, Palva JM (2012) Discovering oscillatory interaction networks with m/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230CrossRef
Zurück zum Zitat Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238–411CrossRef Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238–411CrossRef
Zurück zum Zitat Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1):1–37CrossRefPubMed Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1):1–37CrossRefPubMed
Zurück zum Zitat Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–1076CrossRefPubMedPubMedCentral Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–1076CrossRefPubMedPubMedCentral
Zurück zum Zitat Pinotsis D, Geerts J, Pinto L, FitzGerald T, Litvak V, Auksztulewicz R, Friston K (2017) Linking canonical microcircuits and neuronal activity: dynamic causal modelling of laminar recordings. NeuroImage 146:355–366CrossRefPubMedPubMedCentral Pinotsis D, Geerts J, Pinto L, FitzGerald T, Litvak V, Auksztulewicz R, Friston K (2017) Linking canonical microcircuits and neuronal activity: dynamic causal modelling of laminar recordings. NeuroImage 146:355–366CrossRefPubMedPubMedCentral
Zurück zum Zitat Plomp G, Quairiaux C, Kiss JZ, Astolfi L, Michel CM (2014) Dynamic connectivity among cortical layers in local and large-scale sensory processing. Eur J Neurosci 40(8):3215–3223CrossRefPubMed Plomp G, Quairiaux C, Kiss JZ, Astolfi L, Michel CM (2014) Dynamic connectivity among cortical layers in local and large-scale sensory processing. Eur J Neurosci 40(8):3215–3223CrossRefPubMed
Zurück zum Zitat Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016) How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? NeuroImage 142:135–149CrossRefPubMed Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK (2016) How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? NeuroImage 142:135–149CrossRefPubMed
Zurück zum Zitat Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86(6):457–471CrossRefPubMed Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern 86(6):457–471CrossRefPubMed
Zurück zum Zitat Roebroeck A, Formisano E, Goebel R (2011) The identification of interacting networks in the brain using fmri: model selection, causality and deconvolution. Neuroimage 58(2):296–302CrossRefPubMed Roebroeck A, Formisano E, Goebel R (2011) The identification of interacting networks in the brain using fmri: model selection, causality and deconvolution. Neuroimage 58(2):296–302CrossRefPubMed
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMed
Zurück zum Zitat Sackeim HA (1999) The anticonvulsant hypothesis of the mechanisms of action of ECT: current status. J ECT 15(1):5–26CrossRefPubMed Sackeim HA (1999) The anticonvulsant hypothesis of the mechanisms of action of ECT: current status. J ECT 15(1):5–26CrossRefPubMed
Zurück zum Zitat Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand D, Nobler MS (1996) The effects of electroconvulsive therapy on quantitative electroencephalograms: relationship to clinical outcome. Arch General Psychiatry 53(9):814–824CrossRef Sackeim HA, Luber B, Katzman GP, Moeller JR, Prudic J, Devanand D, Nobler MS (1996) The effects of electroconvulsive therapy on quantitative electroencephalograms: relationship to clinical outcome. Arch General Psychiatry 53(9):814–824CrossRef
Zurück zum Zitat Sackeim HA, Prudic J, Nobler MS, Fitzsimons L, Lisanby SH, Payne N, Berman RM, Brakemeier EL, Perera T, Devanand D (2008) Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. Brain Stimul 1(2):71–83CrossRefPubMedPubMedCentral Sackeim HA, Prudic J, Nobler MS, Fitzsimons L, Lisanby SH, Payne N, Berman RM, Brakemeier EL, Perera T, Devanand D (2008) Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. Brain Stimul 1(2):71–83CrossRefPubMedPubMedCentral
Zurück zum Zitat Sedigh-Sarvestani M, Schiff SJ, Gluckman BJ (2012) Reconstructing mammalian sleep dynamics with data assimilation. PLoS Comput Biol 8(11):e1002–788CrossRef Sedigh-Sarvestani M, Schiff SJ, Gluckman BJ (2012) Reconstructing mammalian sleep dynamics with data assimilation. PLoS Comput Biol 8(11):e1002–788CrossRef
Zurück zum Zitat Sellers KK, Bennett DV, Hutt A, Williams JH, Fröhlich F (2015) Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. J Neurophysiol 113(10):3798–3815CrossRefPubMedPubMedCentral Sellers KK, Bennett DV, Hutt A, Williams JH, Fröhlich F (2015) Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. J Neurophysiol 113(10):3798–3815CrossRefPubMedPubMedCentral
Zurück zum Zitat Shayegh F, Fattahi RA, Sadri S, Ansari-Asl K (2011) A brief survey of computational models of normal and epileptic eeg signals: a guideline to model-based seizure prediction. J Med Signals Sens 1(1):62PubMedPubMedCentral Shayegh F, Fattahi RA, Sadri S, Ansari-Asl K (2011) A brief survey of computational models of normal and epileptic eeg signals: a guideline to model-based seizure prediction. J Med Signals Sens 1(1):62PubMedPubMedCentral
Zurück zum Zitat Spellman T, Peterchev AV, Lisanby SH (2009) Focal electrically administered seizure therapy (feast): a novel form of ect illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology 34(8):2002CrossRefPubMedPubMedCentral Spellman T, Peterchev AV, Lisanby SH (2009) Focal electrically administered seizure therapy (feast): a novel form of ect illustrates the roles of current directionality, polarity, and electrode configuration in seizure induction. Neuropsychopharmacology 34(8):2002CrossRefPubMedPubMedCentral
Zurück zum Zitat Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17(5):652–660CrossRefPubMed Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17(5):652–660CrossRefPubMed
Zurück zum Zitat Staiger JF, Freund TF, Zilles K (1997) Interneurons immunoreactive for vasoactive intestinal polypeptide (vip) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. Eur J Neurosci 9(11):2259–2268CrossRefPubMed Staiger JF, Freund TF, Zilles K (1997) Interneurons immunoreactive for vasoactive intestinal polypeptide (vip) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. Eur J Neurosci 9(11):2259–2268CrossRefPubMed
Zurück zum Zitat Stephan KE, Hilgetag CC, Burns GA, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc London B 355(1393):111–126CrossRef Stephan KE, Hilgetag CC, Burns GA, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc London B 355(1393):111–126CrossRef
Zurück zum Zitat Tamás G, Szabadics J, Lörincz A, Somogyi P (2004) Input and frequency-specific entrainment of postsynaptic firing by ipsps of perisomatic or dendritic origin. Eur J Neurosci 20(10):2681–2690CrossRefPubMed Tamás G, Szabadics J, Lörincz A, Somogyi P (2004) Input and frequency-specific entrainment of postsynaptic firing by ipsps of perisomatic or dendritic origin. Eur J Neurosci 20(10):2681–2690CrossRefPubMed
Zurück zum Zitat Thompson WH, Fransson P (2015) The frequency dimension of fmri dynamic connectivity: network connectivity, functional hubs and integration in the resting brain. NeuroImage 121:227–242CrossRefPubMed Thompson WH, Fransson P (2015) The frequency dimension of fmri dynamic connectivity: network connectivity, functional hubs and integration in the resting brain. NeuroImage 121:227–242CrossRefPubMed
Zurück zum Zitat Trevelyan AJ, Schevon CA (2013) How inhibition influences seizure propagation. Neuropharmacology 69:45–54CrossRefPubMed Trevelyan AJ, Schevon CA (2013) How inhibition influences seizure propagation. Neuropharmacology 69:45–54CrossRefPubMed
Zurück zum Zitat Uhrig L, Dehaene S, Jarraya B (2014) Cerebral mechanisms of general anesthesia. Annales francaises d’anesthesie et de reanimation 33:72–82CrossRefPubMed Uhrig L, Dehaene S, Jarraya B (2014) Cerebral mechanisms of general anesthesia. Annales francaises d’anesthesie et de reanimation 33:72–82CrossRefPubMed
Zurück zum Zitat Van den Hof PM, Dankers A, Heuberger PS, Bombois X (2013) Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates. Automatica 49(10):2994–3006CrossRef Van den Hof PM, Dankers A, Heuberger PS, Bombois X (2013) Identification of dynamic models in complex networks with prediction error methods-basic methods for consistent module estimates. Automatica 49(10):2994–3006CrossRef
Zurück zum Zitat van Rotterdam A, Da Silva FL, Van den Ende J, Viergever M, Hermans A (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44(2):283–305CrossRefPubMed van Rotterdam A, Da Silva FL, Van den Ende J, Viergever M, Hermans A (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44(2):283–305CrossRefPubMed
Zurück zum Zitat Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229CrossRefPubMed Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229CrossRefPubMed
Zurück zum Zitat Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313CrossRef Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313CrossRef
Zurück zum Zitat Weaver KE, Wander JD, Ko AL, Casimo K, Grabowski TJ, Ojemann JG, Darvas F (2016) Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fmri functional connectivity. Neuroimage 128:238–251CrossRefPubMed Weaver KE, Wander JD, Ko AL, Casimo K, Grabowski TJ, Ojemann JG, Darvas F (2016) Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fmri functional connectivity. Neuroimage 128:238–251CrossRefPubMed
Zurück zum Zitat Wendling F, Bartolomei F, Bellanger J, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15(9):1499–1508CrossRefPubMed Wendling F, Bartolomei F, Bellanger J, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15(9):1499–1508CrossRefPubMed
Zurück zum Zitat Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343PubMedPubMedCentral Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343PubMedPubMedCentral
Zurück zum Zitat Xiang W, Yang C, Karfoul A, Jeannès RLB (2016) Quantifying connectivity in a physiology based model using adaptive dynamic causal modelling. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, IEEE, pp 2818–2821 Xiang W, Yang C, Karfoul A, Jeannès RLB (2016) Quantifying connectivity in a physiology based model using adaptive dynamic causal modelling. In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, IEEE, pp 2818–2821
Zurück zum Zitat Yamamura D, Sano A, Tateno T (2017) An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro. Brain Res 1659:96–112CrossRefPubMed Yamamura D, Sano A, Tateno T (2017) An analysis of current source density profiles activated by local stimulation in the mouse auditory cortex in vitro. Brain Res 1659:96–112CrossRefPubMed
Metadaten
Titel
A Blind Module Identification Approach for Predicting Effective Connectivity Within Brain Dynamical Subnetworks
verfasst von
Fadi N. Karameh
Ziad Nahas
Publikationsdatum
04.08.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 1/2019
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0666-3

Weitere Artikel der Ausgabe 1/2019

Brain Topography 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.