Skip to main content
Erschienen in: Brain Structure and Function 8/2016

28.11.2015 | Original Article

A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei

verfasst von: Paul J. May, Susan Warren, Martin O. Bohlen, Miriam Barnerssoi, Anja K. E. Horn

Erschienen in: Brain Structure and Function | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger–Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger–Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger–Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger–Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.
Literatur
Zurück zum Zitat Akert K, Glicksman MA, Lang W, Grob P, Huber A (1980) The Edinger-Westphal nucleus in the monkey. A retrograde tracer study. Brain Res 184:491–498CrossRefPubMed Akert K, Glicksman MA, Lang W, Grob P, Huber A (1980) The Edinger-Westphal nucleus in the monkey. A retrograde tracer study. Brain Res 184:491–498CrossRefPubMed
Zurück zum Zitat Appell PP, Behan M (1990) Sources of subcortical GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158CrossRefPubMed Appell PP, Behan M (1990) Sources of subcortical GABAergic projections to the superior colliculus in the cat. J Comp Neurol 302:143–158CrossRefPubMed
Zurück zum Zitat Barnerssoi M, May PJ (2015) Postembedding immunohistochemistry for inhibitory neurotransmitters in conjunction with neuroanatomical tracers. In: Van Boekstaele EJ (ed) Transmission electron microscopy methods for understanding the brain. Springer, New York (in Press) Barnerssoi M, May PJ (2015) Postembedding immunohistochemistry for inhibitory neurotransmitters in conjunction with neuroanatomical tracers. In: Van Boekstaele EJ (ed) Transmission electron microscopy methods for understanding the brain. Springer, New York (in Press)
Zurück zum Zitat Bender MB, Shanzer S (1964) Oculomotor pathways defined by electrical stimulation and lesions in the brainstem of monkey. In: Bender MB (ed) The oculomotor system. Hoeber Medical Division, Harper & Row, New York, pp 81–140 Bender MB, Shanzer S (1964) Oculomotor pathways defined by electrical stimulation and lesions in the brainstem of monkey. In: Bender MB (ed) The oculomotor system. Hoeber Medical Division, Harper & Row, New York, pp 81–140
Zurück zum Zitat Bohlen MO, Warren S, May PJ (2015) A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct. doi:10.1007/s00429-015-1039-2 Bohlen MO, Warren S, May PJ (2015) A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct. doi:10.​1007/​s00429-015-1039-2
Zurück zum Zitat Burde RM (1988) Disparate visceral neuronal pools subserve spinal cord and ciliary ganglion in the monkey: a double labeling approach. Brain Res 440:177–180CrossRefPubMed Burde RM (1988) Disparate visceral neuronal pools subserve spinal cord and ciliary ganglion in the monkey: a double labeling approach. Brain Res 440:177–180CrossRefPubMed
Zurück zum Zitat Burde RM, Loewy AD (1980) Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198:434–439CrossRefPubMed Burde RM, Loewy AD (1980) Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198:434–439CrossRefPubMed
Zurück zum Zitat Chaturvedi V, Van Gisbergen JA (2000) Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements. Exp Brain Res 132:72–78CrossRefPubMed Chaturvedi V, Van Gisbergen JA (2000) Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements. Exp Brain Res 132:72–78CrossRefPubMed
Zurück zum Zitat Chen B, May PJ (2000) The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp Brain Res 131:10–21CrossRefPubMed Chen B, May PJ (2000) The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp Brain Res 131:10–21CrossRefPubMed
Zurück zum Zitat Clarke RJ, Coimbra CJ, Aléssio ML (1985) Distribution of parasympathetic motoneurones in the oculomotor complex innervating the ciliary ganglion in the marmoset (Callithrix jacchus). Acta Anat (Basel) 121:53–58CrossRef Clarke RJ, Coimbra CJ, Aléssio ML (1985) Distribution of parasympathetic motoneurones in the oculomotor complex innervating the ciliary ganglion in the marmoset (Callithrix jacchus). Acta Anat (Basel) 121:53–58CrossRef
Zurück zum Zitat Cohen B, Büttner-Ennever JA (1984) Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements. Exp Brain Res 57:167–176CrossRefPubMed Cohen B, Büttner-Ennever JA (1984) Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements. Exp Brain Res 57:167–176CrossRefPubMed
Zurück zum Zitat Cohen B, Matsuo V, Fradin J, Raphan T (1985) Horizontal saccades induced by stimulation of the central mesencephalic reticular formation. Exp Brain Res 57:605–616CrossRefPubMed Cohen B, Matsuo V, Fradin J, Raphan T (1985) Horizontal saccades induced by stimulation of the central mesencephalic reticular formation. Exp Brain Res 57:605–616CrossRefPubMed
Zurück zum Zitat Cohen B, Waitzman DM, Büttner-Ennever JA, Matsuo V (1986) Horizontal saccades and the central mesencephalic reticular formation. Prog Brain Res 64:243–256CrossRefPubMed Cohen B, Waitzman DM, Büttner-Ennever JA, Matsuo V (1986) Horizontal saccades and the central mesencephalic reticular formation. Prog Brain Res 64:243–256CrossRefPubMed
Zurück zum Zitat Crawford K, Terasawa E, Kaufman PL (1989) Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Res 503:265–272CrossRefPubMed Crawford K, Terasawa E, Kaufman PL (1989) Reproducible stimulation of ciliary muscle contraction in the cynomolgus monkey via a permanent indwelling midbrain electrode. Brain Res 503:265–272CrossRefPubMed
Zurück zum Zitat Cromer JA, Waitzman DM (2006) Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation. J Physiol 570:507–523CrossRefPubMed Cromer JA, Waitzman DM (2006) Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation. J Physiol 570:507–523CrossRefPubMed
Zurück zum Zitat Cromer JA, Waitzman DM (2007) Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations. J Neurophysiol 98:835–885CrossRefPubMed Cromer JA, Waitzman DM (2007) Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations. J Neurophysiol 98:835–885CrossRefPubMed
Zurück zum Zitat Das VE (2011) Cells in the supraoculomotor area in monkeys with strabismus show activity related to the strabismus angle. Ann NY Acad Sci 1233:85–90CrossRefPubMedPubMedCentral Das VE (2011) Cells in the supraoculomotor area in monkeys with strabismus show activity related to the strabismus angle. Ann NY Acad Sci 1233:85–90CrossRefPubMedPubMedCentral
Zurück zum Zitat Das VE (2012) Responses of cells in the midbrain near-response area in monkeys with strabismus. IOVS 53:3858–3864 Das VE (2012) Responses of cells in the midbrain near-response area in monkeys with strabismus. IOVS 53:3858–3864
Zurück zum Zitat Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol 161:341–358CrossRefPubMed Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol 161:341–358CrossRefPubMed
Zurück zum Zitat Edwards SB, de Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431CrossRefPubMed Edwards SB, de Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431CrossRefPubMed
Zurück zum Zitat Edwards SB, Henkel CK (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J Comp Neurol 179:451–467CrossRefPubMed Edwards SB, Henkel CK (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J Comp Neurol 179:451–467CrossRefPubMed
Zurück zum Zitat Erichsen JT, May PJ (2002) The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation. Vis Neurosci 19:15–29CrossRefPubMed Erichsen JT, May PJ (2002) The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation. Vis Neurosci 19:15–29CrossRefPubMed
Zurück zum Zitat Erichsen JT, Wright NF, May PJ (2014) Morphology and ultrastructure of the medial rectus subgroups motoneurons in the macaque monkey. J Comp Neurol 522:626–641CrossRefPubMedPubMedCentral Erichsen JT, Wright NF, May PJ (2014) Morphology and ultrastructure of the medial rectus subgroups motoneurons in the macaque monkey. J Comp Neurol 522:626–641CrossRefPubMedPubMedCentral
Zurück zum Zitat Gamlin PDR, Zhang Y, Clendaniel RA, Mays LE (1994) Behavior of identified Edinger-Westphal neurons during ocular accommodation. J Neurophysiol 72:2368–2382PubMed Gamlin PDR, Zhang Y, Clendaniel RA, Mays LE (1994) Behavior of identified Edinger-Westphal neurons during ocular accommodation. J Neurophysiol 72:2368–2382PubMed
Zurück zum Zitat Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238CrossRefPubMedPubMedCentral Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238CrossRefPubMedPubMedCentral
Zurück zum Zitat Handel A, Glimcher PW (1997) Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. J Neurophysiol 78:2164–2175PubMed Handel A, Glimcher PW (1997) Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. J Neurophysiol 78:2164–2175PubMed
Zurück zum Zitat Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612CrossRefPubMed Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612CrossRefPubMed
Zurück zum Zitat Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol 507:1317–1335CrossRefPubMed Horn AK, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol 507:1317–1335CrossRefPubMed
Zurück zum Zitat Horn AKE, Bohlen MO, Warren S, May PJ (2012) Evidence for the central mesencephalic reticular formation playing a role in the near triad. Soc Neurosci Abst 38(371):02 Horn AKE, Bohlen MO, Warren S, May PJ (2012) Evidence for the central mesencephalic reticular formation playing a role in the near triad. Soc Neurosci Abst 38(371):02
Zurück zum Zitat Judge SJ, Cumming BG (1986) Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. J Neurophysiol 55:915–930PubMed Judge SJ, Cumming BG (1986) Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation. J Neurophysiol 55:915–930PubMed
Zurück zum Zitat Kozicz T (2003) Neurons colocalizing urocortin and cocaine and amphetamine-regulated transcript immunoreactivities are induced by acute lipopolysaccharide stress in the Edinger-Westphal nucleus in the rat. Neuroscience 116:315–320CrossRefPubMed Kozicz T (2003) Neurons colocalizing urocortin and cocaine and amphetamine-regulated transcript immunoreactivities are induced by acute lipopolysaccharide stress in the Edinger-Westphal nucleus in the rat. Neuroscience 116:315–320CrossRefPubMed
Zurück zum Zitat Kozicz T, Yanaihara H, Arimura A (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 391:1–10CrossRefPubMed Kozicz T, Yanaihara H, Arimura A (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 391:1–10CrossRefPubMed
Zurück zum Zitat Kozicz T, Li M, Arimura A (2001) The activation of urocortin immunoreactive neurons in the Edinger-Westphal nucleus following stress in rats. Stress 4:85–90CrossRefPubMed Kozicz T, Li M, Arimura A (2001) The activation of urocortin immunoreactive neurons in the Edinger-Westphal nucleus following stress in rats. Stress 4:85–90CrossRefPubMed
Zurück zum Zitat Kozicz T, Bittencourt JC, May PJ, Reiner A, Gamlin PD, Palkovits M, Horn AK, Toledo CA, Ryabinin AE (2011) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519:1413–1434CrossRefPubMedPubMedCentral Kozicz T, Bittencourt JC, May PJ, Reiner A, Gamlin PD, Palkovits M, Horn AK, Toledo CA, Ryabinin AE (2011) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519:1413–1434CrossRefPubMedPubMedCentral
Zurück zum Zitat Kübler TC, Kasneci E, Rosensteil W, Schiefer U, Nagel K, Papgeorgiou E (2014) Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transport Res (F) 24:231–243 Kübler TC, Kasneci E, Rosensteil W, Schiefer U, Nagel K, Papgeorgiou E (2014) Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transport Res (F) 24:231–243
Zurück zum Zitat Loewenfeld IE (1993) The light reflex. The pupil, anatomy, physiology, and clinical applications. Iowa State University Press, Ames, pp 83–273 Loewenfeld IE (1993) The light reflex. The pupil, anatomy, physiology, and clinical applications. Iowa State University Press, Ames, pp 83–273
Zurück zum Zitat Maciewicz R, Phipps BS, Foote WE, Aronin N, Difiglia M (1983) The distribution of substance P-containing neurons in the cat Edinger-Westphal nucleus: relationship to efferent projection systems. Brain Res 270:217–230CrossRefPubMed Maciewicz R, Phipps BS, Foote WE, Aronin N, Difiglia M (1983) The distribution of substance P-containing neurons in the cat Edinger-Westphal nucleus: relationship to efferent projection systems. Brain Res 270:217–230CrossRefPubMed
Zurück zum Zitat Maxwell JS, King WM (1992) Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. J Neurophysiol 68:1248–1260PubMed Maxwell JS, King WM (1992) Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. J Neurophysiol 68:1248–1260PubMed
Zurück zum Zitat May PJ, Porter JD, Gamlin PD (1992) Interconnections between the primate cerebellum and midbrain near-response regions. J Comp Neurol 315:98–116CrossRefPubMed May PJ, Porter JD, Gamlin PD (1992) Interconnections between the primate cerebellum and midbrain near-response regions. J Comp Neurol 315:98–116CrossRefPubMed
Zurück zum Zitat May PJ, Reiner AJ, Ryabinin AE (2008a) Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316CrossRefPubMedPubMedCentral May PJ, Reiner AJ, Ryabinin AE (2008a) Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316CrossRefPubMedPubMedCentral
Zurück zum Zitat May PJ, Sun W, Erichsen JT (2008b) Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger-Westphal nucleus. In: Kennard C, Leigh RJ (eds) Using eye movements as an experimental probe of brain function, Prog Brain Res, vol 171, pp 97–106 May PJ, Sun W, Erichsen JT (2008b) Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger-Westphal nucleus. In: Kennard C, Leigh RJ (eds) Using eye movements as an experimental probe of brain function, Prog Brain Res, vol 171, pp 97–106
Zurück zum Zitat Mays LE (1984) Neural control of vergence eye movements: convergence and divergence neurons in midbrain. J Neurophysiol 51:1091–1108PubMed Mays LE (1984) Neural control of vergence eye movements: convergence and divergence neurons in midbrain. J Neurophysiol 51:1091–1108PubMed
Zurück zum Zitat Mays LE, Porter JD, Gamlin PD, Tello CA (1986) Neural control of vergence eye movements: neurons encoding vergence velocity. J Neurophysiol 56:1007–1021PubMed Mays LE, Porter JD, Gamlin PD, Tello CA (1986) Neural control of vergence eye movements: neurons encoding vergence velocity. J Neurophysiol 56:1007–1021PubMed
Zurück zum Zitat Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol 60:263–302PubMed Moschovakis AK, Karabelas AB, Highstein SM (1988) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol 60:263–302PubMed
Zurück zum Zitat Ohtsuka K, Nagasaka Y (1999) Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat. J Comp Neurol 413:68–76CrossRefPubMed Ohtsuka K, Nagasaka Y (1999) Divergent axon collaterals from the rostral superior colliculus to the pretectal accommodation-related areas and the omnipause neuron area in the cat. J Comp Neurol 413:68–76CrossRefPubMed
Zurück zum Zitat Ohtsuka K, Sato A (1997) Retinal projections to the accommodation-related area in the rostral superior colliculus of the cat. Exp Brain Res 113:169–173CrossRefPubMed Ohtsuka K, Sato A (1997) Retinal projections to the accommodation-related area in the rostral superior colliculus of the cat. Exp Brain Res 113:169–173CrossRefPubMed
Zurück zum Zitat Pathmanathan JS, Cromer JA, Cullen KE, Waitzman DM (2006a) Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Exp Brain Res 168:471–492CrossRefPubMed Pathmanathan JS, Cromer JA, Cullen KE, Waitzman DM (2006a) Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Exp Brain Res 168:471–492CrossRefPubMed
Zurück zum Zitat Pathmanathan JS, Presnell R, Cromer JA, Cullen KE, Waitzman DM (2006b) Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Exp Brain Res 168:455–470CrossRefPubMed Pathmanathan JS, Presnell R, Cromer JA, Cullen KE, Waitzman DM (2006b) Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Exp Brain Res 168:455–470CrossRefPubMed
Zurück zum Zitat Perkins E, Warren S, May PJ (2009) The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla. Anat Rec 292:1162–1181CrossRef Perkins E, Warren S, May PJ (2009) The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla. Anat Rec 292:1162–1181CrossRef
Zurück zum Zitat Perkins E, May PJ, Warren S (2014) Feed-forward and feedback projections of midbrain reticular formation neurons in the cat. Front Neuroanat 7:55CrossRefPubMedPubMedCentral Perkins E, May PJ, Warren S (2014) Feed-forward and feedback projections of midbrain reticular formation neurons in the cat. Front Neuroanat 7:55CrossRefPubMedPubMedCentral
Zurück zum Zitat Ryabinin AE, Weitemier AZ (2006) The urocortin 1 neurocircuit: ethanol-sensitivity and potential involvement in alcohol consumption. Brain Res Rev 52:368–380CrossRefPubMed Ryabinin AE, Weitemier AZ (2006) The urocortin 1 neurocircuit: ethanol-sensitivity and potential involvement in alcohol consumption. Brain Res Rev 52:368–380CrossRefPubMed
Zurück zum Zitat Sun W, May PJ (2014b) Central pupillary light reflex circuits in the cat: morphology, ultrastructure and inputs of preganglionic motoneurons. J Comp Neurol 522:3978–4002CrossRefPubMedPubMedCentral Sun W, May PJ (2014b) Central pupillary light reflex circuits in the cat: morphology, ultrastructure and inputs of preganglionic motoneurons. J Comp Neurol 522:3978–4002CrossRefPubMedPubMedCentral
Zurück zum Zitat Tang X, Büttner-Ennever J, Mustari MJ, Horn AKE (2015) Internal organization of medial rectus and inferior rectus muscle neurons in the C group of the oculomotor nucleus in monkey. J Comp Neurol 523:1809–1823CrossRefPubMedPubMedCentral Tang X, Büttner-Ennever J, Mustari MJ, Horn AKE (2015) Internal organization of medial rectus and inferior rectus muscle neurons in the C group of the oculomotor nucleus in monkey. J Comp Neurol 523:1809–1823CrossRefPubMedPubMedCentral
Zurück zum Zitat Van Horn MR, Waitzman DM, Cullen KE (2013) Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space. J Neurosci 33:7274–7284CrossRefPubMed Van Horn MR, Waitzman DM, Cullen KE (2013) Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space. J Neurosci 33:7274–7284CrossRefPubMed
Zurück zum Zitat Vasconcelos LA, Donaldson C, Sita LV, Casatti CA, Lotfi CF, Wang L, Cadinouche MZ, Frigo L, Elias CF, Lovejoy DA, Bittencourt JC (2003) Urocortin in the central nervous system of a primate (Cebus apella): sequencing, immunohistochemical, and hybridization histochemical characterization. J Comp Neurol 463:157–175CrossRefPubMed Vasconcelos LA, Donaldson C, Sita LV, Casatti CA, Lotfi CF, Wang L, Cadinouche MZ, Frigo L, Elias CF, Lovejoy DA, Bittencourt JC (2003) Urocortin in the central nervous system of a primate (Cebus apella): sequencing, immunohistochemical, and hybridization histochemical characterization. J Comp Neurol 463:157–175CrossRefPubMed
Zurück zum Zitat Waitzman DM, Silakov VL, Cohen B (1996) Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. J Neurophysiol 75:1546–1572PubMed Waitzman DM, Silakov VL, Cohen B (1996) Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. J Neurophysiol 75:1546–1572PubMed
Zurück zum Zitat Waitzman DM, Van Horn MR, Cullen KE (2008) Neuronal evidence for individual eye control in the primate cMRF. Prog Brain Res 171:143–150CrossRefPubMed Waitzman DM, Van Horn MR, Cullen KE (2008) Neuronal evidence for individual eye control in the primate cMRF. Prog Brain Res 171:143–150CrossRefPubMed
Zurück zum Zitat Walton MM, Mays LE (2003) Discharge of saccade-related superior colliculus neurons during saccades accompanied by vergence. J Neurophysiol 90:1124–1139CrossRefPubMed Walton MM, Mays LE (2003) Discharge of saccade-related superior colliculus neurons during saccades accompanied by vergence. J Neurophysiol 90:1124–1139CrossRefPubMed
Zurück zum Zitat Wang N, Warren S, May PJ (2010) The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Exp Brain Res 201:701–717CrossRefPubMed Wang N, Warren S, May PJ (2010) The macaque midbrain reticular formation sends side-specific feedback to the superior colliculus. Exp Brain Res 201:701–717CrossRefPubMed
Zurück zum Zitat Wang N, Perkins E, Zhou L, Warren S, May PJ (2013) Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. J Neurosci 33:16285–16296CrossRefPubMedPubMedCentral Wang N, Perkins E, Zhou L, Warren S, May PJ (2013) Anatomical evidence that the superior colliculus controls saccades through central mesencephalic reticular formation gating of omnipause neuron activity. J Neurosci 33:16285–16296CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang CA, Boehnke SE, Itti L, Munoz DP (2014) Transient pupil response is modulated by contrast-based saliency. J Neurosci 34:408–417CrossRefPubMed Wang CA, Boehnke SE, Itti L, Munoz DP (2014) Transient pupil response is modulated by contrast-based saliency. J Neurosci 34:408–417CrossRefPubMed
Zurück zum Zitat Warren S, Waitzman DM, May PJ (2008) Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque. Anat Rec 291:141–160CrossRef Warren S, Waitzman DM, May PJ (2008) Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque. Anat Rec 291:141–160CrossRef
Zurück zum Zitat Weitemier AZ, Ryabinin AE (2005) Lesions of the Edinger-Westphal nucleus alter food and water consumption. Behav Neurosci 119:1235–1243CrossRefPubMed Weitemier AZ, Ryabinin AE (2005) Lesions of the Edinger-Westphal nucleus alter food and water consumption. Behav Neurosci 119:1235–1243CrossRefPubMed
Zurück zum Zitat Weitemier AZ, Ryabinin AE (2006) Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice. Neuroscience 137:1439–1445CrossRefPubMed Weitemier AZ, Ryabinin AE (2006) Urocortin 1 in the dorsal raphe regulates food and fluid consumption, but not ethanol preference in C57BL/6J mice. Neuroscience 137:1439–1445CrossRefPubMed
Zurück zum Zitat Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191CrossRefPubMed Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191CrossRefPubMed
Zurück zum Zitat Zhou W, King WM (1998) Premotor commands encode monocular eye movements. Nature 393:692–695CrossRefPubMed Zhou W, King WM (1998) Premotor commands encode monocular eye movements. Nature 393:692–695CrossRefPubMed
Zurück zum Zitat Zhou L, Warren S, May PJ (2008) The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Exp Brain Res 189:485–496CrossRefPubMedPubMedCentral Zhou L, Warren S, May PJ (2008) The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Exp Brain Res 189:485–496CrossRefPubMedPubMedCentral
Metadaten
Titel
A central mesencephalic reticular formation projection to the Edinger–Westphal nuclei
verfasst von
Paul J. May
Susan Warren
Martin O. Bohlen
Miriam Barnerssoi
Anja K. E. Horn
Publikationsdatum
28.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1147-z

Weitere Artikel der Ausgabe 8/2016

Brain Structure and Function 8/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.