Skip to main content
Erschienen in: Inflammation 4/2017

22.05.2017 | ORIGINAL ARTICLE

A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis

verfasst von: Muna S. Elburki, Carlos Rossa Jr, Morgana R. Guimarães-Stabili, Hsi-Ming Lee, Fabiana A. Curylofo-Zotti, Francis Johnson, Lorne M. Golub

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
Literatur
1.
Zurück zum Zitat Kirkwood, K.L., J.A. Cirelli, J.E. Rogers, and W.V. Giannobile. 2007. Novel host response therapeutic approaches to treat periodontal diseases. Periodontology 2000 43: 294–315.CrossRefPubMedPubMedCentral Kirkwood, K.L., J.A. Cirelli, J.E. Rogers, and W.V. Giannobile. 2007. Novel host response therapeutic approaches to treat periodontal diseases. Periodontology 2000 43: 294–315.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Lee, H.-J., I.-K. Kang, C.-P. Chung, and S.-M. Choi. 1995. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of Clinical Periodontology 22: 885–890.CrossRefPubMed Lee, H.-J., I.-K. Kang, C.-P. Chung, and S.-M. Choi. 1995. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. Journal of Clinical Periodontology 22: 885–890.CrossRefPubMed
3.
Zurück zum Zitat Tsai, C., Y. Ho, and C. Chen. 1995. Levels of interleukin-lß and interleukin-8 in gingival crevicular fluids in adult periodontitis. Journal of Periodontology 66: 852–859.CrossRefPubMed Tsai, C., Y. Ho, and C. Chen. 1995. Levels of interleukin-lß and interleukin-8 in gingival crevicular fluids in adult periodontitis. Journal of Periodontology 66: 852–859.CrossRefPubMed
4.
Zurück zum Zitat Leng, S.X., and J.A. Elias. 1997. Interleukin-11 inhibits macrophage interleukin-12 production. Journal of Immunology 159: 2161–2168. Leng, S.X., and J.A. Elias. 1997. Interleukin-11 inhibits macrophage interleukin-12 production. Journal of Immunology 159: 2161–2168.
5.
Zurück zum Zitat Haffajee, A., and S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5: 78–111.CrossRefPubMed Haffajee, A., and S. Socransky. 1994. Microbial etiological agents of destructive periodontal diseases. Periodontology 2000 5: 78–111.CrossRefPubMed
6.
Zurück zum Zitat Wilson, S.R., C. Peters, P. Saftig, and D. Bromme. 2009. Cathepsin K Activity-dependent Regulation of Osteoclast Actin Ring Formation and Bone Resorption. The Journal of Biological Chemistry 284: 2584–2592.CrossRefPubMedPubMedCentral Wilson, S.R., C. Peters, P. Saftig, and D. Bromme. 2009. Cathepsin K Activity-dependent Regulation of Osteoclast Actin Ring Formation and Bone Resorption. The Journal of Biological Chemistry 284: 2584–2592.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Graves, D.T., and R.A. Kayal. 2008. Diabetic complications and dysregulated innate immunity. Front. Biosci. J. Virtual Libr. 13: 1227.CrossRef Graves, D.T., and R.A. Kayal. 2008. Diabetic complications and dysregulated innate immunity. Front. Biosci. J. Virtual Libr. 13: 1227.CrossRef
8.
Zurück zum Zitat Baynes, J. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.CrossRefPubMed Baynes, J. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.CrossRefPubMed
9.
Zurück zum Zitat Schmidt, A., E. Weldman, E. Lalla, S. Yan, O. Hori, R. Cao, et al. 1996. Advanced glycation endproducts (AGEs) induce Oxidant Stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research 31: 308–315.CrossRef Schmidt, A., E. Weldman, E. Lalla, S. Yan, O. Hori, R. Cao, et al. 1996. Advanced glycation endproducts (AGEs) induce Oxidant Stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. Journal of Periodontal Research 31: 308–315.CrossRef
10.
Zurück zum Zitat Lalla, E., I.B. Lamster, M. Feit, L. Huang, A. Spessot, W. Qu, et al. 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. The Journal of Clinical Investigation 105: 1117–1124.CrossRefPubMedPubMedCentral Lalla, E., I.B. Lamster, M. Feit, L. Huang, A. Spessot, W. Qu, et al. 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. The Journal of Clinical Investigation 105: 1117–1124.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Golub, L.M., J.B. Payne, R.A. Reinhardt, and G. Nieman. 2006. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. Journal of Dental Research 85: 102–105.CrossRefPubMed Golub, L.M., J.B. Payne, R.A. Reinhardt, and G. Nieman. 2006. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. Journal of Dental Research 85: 102–105.CrossRefPubMed
12.
Zurück zum Zitat Engebretson, S.P., and J. Hey-Hadavi. 2011. Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: A pilot study. Pharmacological Research 64: 624–629.CrossRefPubMedPubMedCentral Engebretson, S.P., and J. Hey-Hadavi. 2011. Sub-antimicrobial doxycycline for periodontitis reduces hemoglobin A1c in subjects with type 2 diabetes: A pilot study. Pharmacological Research 64: 624–629.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Yamamoto, Y., A. Harashima, H. Saito, K. Tsuneyama, S. Munesue, S. Motoyoshi, et al. 2011. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. Journal of Immunology 186: 3248–3257.CrossRef Yamamoto, Y., A. Harashima, H. Saito, K. Tsuneyama, S. Munesue, S. Motoyoshi, et al. 2011. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. Journal of Immunology 186: 3248–3257.CrossRef
14.
Zurück zum Zitat Xie, J., J.D. Méndez, V. Méndez-Valenzuela, and M.M. Aguilar-Hernández. 2013. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 25: 2185–2197.CrossRefPubMed Xie, J., J.D. Méndez, V. Méndez-Valenzuela, and M.M. Aguilar-Hernández. 2013. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 25: 2185–2197.CrossRefPubMed
15.
Zurück zum Zitat Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: Relatives, friends or neighbours? Molecular Immunology 56: 739–744.CrossRefPubMed Ibrahim, Z.A., C.L. Armour, S. Phipps, and M.B. Sukkar. 2013. RAGE and TLRs: Relatives, friends or neighbours? Molecular Immunology 56: 739–744.CrossRefPubMed
16.
Zurück zum Zitat Agati, V., and A. Schmidt. 2010. RAGE and the pathogenesis of Chronic Kidney disease. Nature Reviews. Nephrology 6: 352–360.CrossRefPubMed Agati, V., and A. Schmidt. 2010. RAGE and the pathogenesis of Chronic Kidney disease. Nature Reviews. Nephrology 6: 352–360.CrossRefPubMed
17.
Zurück zum Zitat Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, et al. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32: 763–777.CrossRefPubMed Srikanth, V., A. Maczurek, T. Phan, M. Steele, B. Westcott, D. Juskiw, et al. 2011. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging 32: 763–777.CrossRefPubMed
18.
Zurück zum Zitat Bickel, M., B. Axtelius, C. Solioz, and R. Attström. 2001. Cytokine gene expression in chronic periodontitis. Journal of Clinical Periodontology 28: 840–847.CrossRefPubMed Bickel, M., B. Axtelius, C. Solioz, and R. Attström. 2001. Cytokine gene expression in chronic periodontitis. Journal of Clinical Periodontology 28: 840–847.CrossRefPubMed
19.
20.
Zurück zum Zitat Zhang, Y., Y. Gu, H-M. Lee, E. Hambardjieva, K. Vrankova, L.M. Golub, et al. 2012. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Current Medicinal Chemistry 19: 4348–4358.CrossRefPubMed Zhang, Y., Y. Gu, H-M. Lee, E. Hambardjieva, K. Vrankova, L.M. Golub, et al. 2012. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins. Current Medicinal Chemistry 19: 4348–4358.CrossRefPubMed
21.
Zurück zum Zitat Zhang, Y., L.M. Golub, F. Johnson, and A. Wishnia. 2012. pKa, zinc-and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Current Medicinal Chemistry 19: 4367–4375.CrossRefPubMed Zhang, Y., L.M. Golub, F. Johnson, and A. Wishnia. 2012. pKa, zinc-and serum albumin-binding of curcumin and two novel biologically-active chemically-modified curcumins. Current Medicinal Chemistry 19: 4367–4375.CrossRefPubMed
22.
Zurück zum Zitat Katzap E, Goldstein MJ, Shah NV, Schwartz J, Razzano P, Golub LM, et al. (2011). The chondroprotective capability of curcumin (Curcuma longa) and its derivatives against IL-1β and OsM-mediated chrondrolysis. Transaction Orthopaedic Research Society;Abstract # 36. Katzap E, Goldstein MJ, Shah NV, Schwartz J, Razzano P, Golub LM, et al. (2011). The chondroprotective capability of curcumin (Curcuma longa) and its derivatives against IL-1β and OsM-mediated chrondrolysis. Transaction Orthopaedic Research Society;Abstract # 36.
23.
Zurück zum Zitat Elburki, M.S., C. Rossa Jr., M.R. Guimaraes, M. Goodenough, H-M. Lee, F.A. Curylofo, et al. 2014. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: Initial observations. Mediators of Inflammation 2014: 1–10.CrossRef Elburki, M.S., C. Rossa Jr., M.R. Guimaraes, M. Goodenough, H-M. Lee, F.A. Curylofo, et al. 2014. A novel chemically modified curcumin reduces severity of experimental periodontal disease in rats: Initial observations. Mediators of Inflammation 2014: 1–10.CrossRef
24.
Zurück zum Zitat Botchkina, G.I., E.S. Zuniga, R.H. Rowehl, R. Park, R. Bhalla, A.B. Bialkowska, et al. 2013. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PloS One 8: e69884.CrossRefPubMedPubMedCentral Botchkina, G.I., E.S. Zuniga, R.H. Rowehl, R. Park, R. Bhalla, A.B. Bialkowska, et al. 2013. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PloS One 8: e69884.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Xie, H., C. Wang, X. Wu, X. Liu, S. Qiao, C. Liu, et al. 2012. Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium. The Journal of Biomedical Research 26: 37–43.CrossRefPubMed Xie, H., C. Wang, X. Wu, X. Liu, S. Qiao, C. Liu, et al. 2012. Parthenolide attenuates LPS-induced activation of NF-κB in a time-dependent manner in rat myocardium. The Journal of Biomedical Research 26: 37–43.CrossRefPubMed
26.
Zurück zum Zitat Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, et al. 2011. Jack of all trades: Pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64: 580–589.CrossRefPubMedPubMedCentral Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, et al. 2011. Jack of all trades: Pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64: 580–589.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. The Journal of Biological Chemistry 280: 244–252.CrossRefPubMed Anrather, J., G. Racchumi, and C. Iadecola. 2005. cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. The Journal of Biological Chemistry 280: 244–252.CrossRefPubMed
28.
Zurück zum Zitat Ulevitch, R.J. 2004. Therapeutics targeting the innate immune system. Nature Reviews. Immunology 4: 512–520.CrossRefPubMed Ulevitch, R.J. 2004. Therapeutics targeting the innate immune system. Nature Reviews. Immunology 4: 512–520.CrossRefPubMed
29.
Zurück zum Zitat Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). The Journal of Biological Chemistry 270: 24995–25000.CrossRefPubMed Singh, S., and B.B. Aggarwal. 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). The Journal of Biological Chemistry 270: 24995–25000.CrossRefPubMed
30.
Zurück zum Zitat Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.CrossRefPubMed Anand, P., A.B. Kunnumakkara, R.A. Newman, and B.B. Aggarwal. 2007. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 4: 807–818.CrossRefPubMed
31.
Zurück zum Zitat Li, Q., H. Yu, R. Zinna, K. Martin, B. Herbert, A. Liu, et al. 2011. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. The Journal of Pharmacology and Experimental Therapeutics 336: 633–642.CrossRefPubMedPubMedCentral Li, Q., H. Yu, R. Zinna, K. Martin, B. Herbert, A. Liu, et al. 2011. Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss. The Journal of Pharmacology and Experimental Therapeutics 336: 633–642.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Sartori, R., F. Li, and K.L. Kirkwood. 2009. MAP kinase phosphatase-1 protects against inflammatory bone loss. Journal of Dental Research 88: 1125–1130.CrossRefPubMedPubMedCentral Sartori, R., F. Li, and K.L. Kirkwood. 2009. MAP kinase phosphatase-1 protects against inflammatory bone loss. Journal of Dental Research 88: 1125–1130.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Travan, S., F. Li, N.J. D’Silva, E.H. Slate, and K.L. Kirkwood. 2013. Differential expression of mitogen activating protein kinases in periodontitis. Journal of Clinical Periodontology 40: 757–764.CrossRefPubMedPubMedCentral Travan, S., F. Li, N.J. D’Silva, E.H. Slate, and K.L. Kirkwood. 2013. Differential expression of mitogen activating protein kinases in periodontitis. Journal of Clinical Periodontology 40: 757–764.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Garcia de Aquino, S., F.R. Manzolli Leite, D.R. Stach-Machado, J.A. Francisco da Silva, L.C. Spolidorio, and C. Rossa. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sciences 84: 745–754.CrossRefPubMed Garcia de Aquino, S., F.R. Manzolli Leite, D.R. Stach-Machado, J.A. Francisco da Silva, L.C. Spolidorio, and C. Rossa. 2009. Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life Sciences 84: 745–754.CrossRefPubMed
35.
Zurück zum Zitat de Souza, J., C. Rossa Jr., G. Garlet, A. Nogueira, and J. Cirelli. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Journal of Applied Oral Science 20: 128–138.CrossRefPubMedPubMedCentral de Souza, J., C. Rossa Jr., G. Garlet, A. Nogueira, and J. Cirelli. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Journal of Applied Oral Science 20: 128–138.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Lee, J., S. Kumar, D. Griswold, D. Underwood, B. Votta, and J. Adams. 2000. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47: 185–201.CrossRefPubMed Lee, J., S. Kumar, D. Griswold, D. Underwood, B. Votta, and J. Adams. 2000. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47: 185–201.CrossRefPubMed
38.
Zurück zum Zitat Elburki, M.S., D.D. Moore, N.G. Terezakis, Y. Zhang, H-M. Lee, F. Johnson, et al. 2017. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. Journal of Periodontal Research 52:186–200. Elburki, M.S., D.D. Moore, N.G. Terezakis, Y. Zhang, H-M. Lee, F. Johnson, et al. 2017. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. Journal of Periodontal Research 52:186–200. 
39.
Zurück zum Zitat Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.CrossRef Epstein, F.H., P.J. Barnes, and M. Karin. 1997. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336: 1066–1071.CrossRef
40.
Zurück zum Zitat Patil, C., X. Zhu, C. Rossa, Y.J. Kim, and K.L. Kirkwood. 2004. p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunological Investigations 33: 213–233.CrossRefPubMedPubMedCentral Patil, C., X. Zhu, C. Rossa, Y.J. Kim, and K.L. Kirkwood. 2004. p38 MAPK regulates IL-1β induced IL-6 expression through mRNA stability in osteoblasts. Immunological Investigations 33: 213–233.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Rossa, C. Jr., M. Liu, C. Patil, and K.L. Kirkwood. 2005. MKK3/6—p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1β and TNF-α in immortalized periodontal ligament fibroblasts. Matrix Biology 24: 478–488.CrossRefPubMed Rossa, C. Jr., M. Liu, C. Patil, and K.L. Kirkwood. 2005. MKK3/6—p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1β and TNF-α in immortalized periodontal ligament fibroblasts. Matrix Biology 24: 478–488.CrossRefPubMed
42.
Zurück zum Zitat Mbalaviele, G. 2006. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of Pharmacology and Experimental Therapeutics 317: 1044–1053.CrossRefPubMed Mbalaviele, G. 2006. Inhibition of p38 mitogen-activated protein kinase prevents inflammatory bone destruction. The Journal of Pharmacology and Experimental Therapeutics 317: 1044–1053.CrossRefPubMed
43.
Zurück zum Zitat Rossa, C. Jr., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1 β and TNF-α-induced RANKL expression in bone marrow stromal cells. Journal of Interferon & Cytokine Research 26: 719–729.CrossRef Rossa, C. Jr., K. Ehmann, M. Liu, C. Patil, and K.L. Kirkwood. 2006. MKK3/6-p38 MAPK signaling is required for IL-1 β and TNF-α-induced RANKL expression in bone marrow stromal cells. Journal of Interferon & Cytokine Research 26: 719–729.CrossRef
44.
Zurück zum Zitat Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, A.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78: 1992–1998.CrossRefPubMed Rogers, J.E., F. Li, D.D. Coatney, J. Otremba, J.M. Kriegl, A.A. Protter, et al. 2007. A p38 mitogen-activated protein kinase inhibitor arrests active alveolar bone loss in a rat periodontitis model. Journal of Periodontology 78: 1992–1998.CrossRefPubMed
45.
Zurück zum Zitat Guimarães, M.R., L.S. Coimbra, S.G. de Aquino, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2011. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo: Curcumin inhibits periodontal disease in vivo. Journal of Periodontal Research 46: 269–279.CrossRefPubMedPubMedCentral Guimarães, M.R., L.S. Coimbra, S.G. de Aquino, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2011. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo: Curcumin inhibits periodontal disease in vivo. Journal of Periodontal Research 46: 269–279.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Guimaraes, M.R., S.G. de Aquino, L.S. Coimbra, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2012. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immunity 18: 155–163.CrossRefPubMed Guimaraes, M.R., S.G. de Aquino, L.S. Coimbra, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2012. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immunity 18: 155–163.CrossRefPubMed
47.
Zurück zum Zitat Preshaw, P.M. 2013. Diabetes and periodontitis: what’s it all about. Pract. Diabetes 30: 9–10.CrossRef Preshaw, P.M. 2013. Diabetes and periodontitis: what’s it all about. Pract. Diabetes 30: 9–10.CrossRef
48.
Zurück zum Zitat Velea, O.A., C. Kralev, D. Onisei, D. Onisei, L.M. Nica, and I.P. Velea. 2013. Diabetes mellitus and periodontal disease—a two-way road: Current concepts and future considerations (literature review). Eur. Sci. J. 9: 61–79. Velea, O.A., C. Kralev, D. Onisei, D. Onisei, L.M. Nica, and I.P. Velea. 2013. Diabetes mellitus and periodontal disease—a two-way road: Current concepts and future considerations (literature review). Eur. Sci. J. 9: 61–79.
49.
Zurück zum Zitat Meenawat, A., K. Punn, V. Srivastava, A. Meenawat, R. Dolsa, and V. Govila. 2013. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J Indian Soc Periodontol 17: 597–600.CrossRefPubMedPubMedCentral Meenawat, A., K. Punn, V. Srivastava, A. Meenawat, R. Dolsa, and V. Govila. 2013. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J Indian Soc Periodontol 17: 597–600.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Claudino, M., G. Gennaro, T.M. Cestari, C.T. Spadella, G.P. Garlet, and G.F. Assis. 2012. Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental Diabetes Research 2012: 1–10.CrossRef Claudino, M., G. Gennaro, T.M. Cestari, C.T. Spadella, G.P. Garlet, and G.F. Assis. 2012. Spontaneous periodontitis development in diabetic rats involves an unrestricted expression of inflammatory cytokines and tissue destructive factors in the absence of major changes in commensal oral microbiota. Experimental Diabetes Research 2012: 1–10.CrossRef
51.
Zurück zum Zitat Liu, R., H.S. Bal, T. Desta, N. Krothapalli, M. Alyassi, Q. Luan, et al. 2006. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. Journal of Dental Research 85: 510–514.CrossRefPubMedPubMedCentral Liu, R., H.S. Bal, T. Desta, N. Krothapalli, M. Alyassi, Q. Luan, et al. 2006. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. Journal of Dental Research 85: 510–514.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Chang, K.M., N.S. Ramamurthy, T.F. McNamara, R.T. Evans, B. Klausen, and L.M. Golub. 1994. Tetracycline inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J Periodont Res 29: 242–249.CrossRefPubMed Chang, K.M., N.S. Ramamurthy, T.F. McNamara, R.T. Evans, B. Klausen, and L.M. Golub. 1994. Tetracycline inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. J Periodont Res 29: 242–249.CrossRefPubMed
53.
Zurück zum Zitat Bildt, M.M., M. Bloemen, A.M. Kuijpers-Jagtman, and J.W. Von den Hoff. 2008. Collagenolytic fragments and active gelatinase complexes in periodontitis. Journal of Periodontology 79: 1704–1711.CrossRefPubMed Bildt, M.M., M. Bloemen, A.M. Kuijpers-Jagtman, and J.W. Von den Hoff. 2008. Collagenolytic fragments and active gelatinase complexes in periodontitis. Journal of Periodontology 79: 1704–1711.CrossRefPubMed
54.
Zurück zum Zitat Patil, C., C. Rossa, and K.L. Kirkwood. 2006. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiology and Immunology 21: 392–398.CrossRefPubMed Patil, C., C. Rossa, and K.L. Kirkwood. 2006. Actinobacillus actinomycetemcomitans lipopolysaccharide induces interleukin-6 expression through multiple mitogen-activated protein kinase pathways in periodontal ligament fibroblasts. Oral Microbiology and Immunology 21: 392–398.CrossRefPubMed
55.
Zurück zum Zitat Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, et al. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18: 6013–6020.CrossRefPubMed Plummer, S.M., K.A. Holloway, M.M. Manson, R.J. Munks, A. Kaptein, S. Farrow, et al. 1999. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 18: 6013–6020.CrossRefPubMed
56.
Zurück zum Zitat Gaddipati, J.P., S.V. Sundar, J. Calemine, P. Seth, G.S. Sidhu, and R.K. Maheshwari. 2003. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19: 150–156.CrossRefPubMed Gaddipati, J.P., S.V. Sundar, J. Calemine, P. Seth, G.S. Sidhu, and R.K. Maheshwari. 2003. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19: 150–156.CrossRefPubMed
57.
Zurück zum Zitat Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal. 2008. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology 75: 787–809.CrossRefPubMed Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal. 2008. Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology 75: 787–809.CrossRefPubMed
58.
Zurück zum Zitat Woo, M.-S., S.-H. Jung, S.-Y. Kim, J.-W. Hyun, K.-H. Ko, W.-K. Kim, et al. 2005. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochemical and Biophysical Research Communications 335: 1017–1025.CrossRefPubMed Woo, M.-S., S.-H. Jung, S.-Y. Kim, J.-W. Hyun, K.-H. Ko, W.-K. Kim, et al. 2005. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochemical and Biophysical Research Communications 335: 1017–1025.CrossRefPubMed
59.
Zurück zum Zitat Guimarães, M.R., F.R.M. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2013. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58: 1309–1317.CrossRefPubMedPubMedCentral Guimarães, M.R., F.R.M. Leite, L.C. Spolidorio, K.L. Kirkwood, and C. Rossa. 2013. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Archives of Oral Biology 58: 1309–1317.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Banerjee, M., L.M. Tripathi, V.M.L. Srivastava, A. Puri, and R. Shukla. 2003. Modulationof inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology 25: 213–224.CrossRefPubMed Banerjee, M., L.M. Tripathi, V.M.L. Srivastava, A. Puri, and R. Shukla. 2003. Modulationof inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology 25: 213–224.CrossRefPubMed
61.
Zurück zum Zitat Fu, Y., S. Zheng, J. Lin, J. Ryerse, and A. Chen. 2007. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology 73: 399–409.CrossRefPubMed Fu, Y., S. Zheng, J. Lin, J. Ryerse, and A. Chen. 2007. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology 73: 399–409.CrossRefPubMed
62.
Zurück zum Zitat Geivelis, M., W. Turner, E. Pederson, and B. Lamberts. 1993. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. Journal of Periodontology 64: 980–983.CrossRefPubMed Geivelis, M., W. Turner, E. Pederson, and B. Lamberts. 1993. Measurements of interleukin-6 in gingival crevicular fluid from adults with destructive periodontal disease. Journal of Periodontology 64: 980–983.CrossRefPubMed
63.
Zurück zum Zitat Offenbacher, S., P. Heasman, and G. Collins. 1993. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. Journal of Periodontology 64: 432–444.PubMed Offenbacher, S., P. Heasman, and G. Collins. 1993. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. Journal of Periodontology 64: 432–444.PubMed
64.
Zurück zum Zitat Gamonal, J., A. Acevedo, A. Bascones, O. Jorge, and A. Silva. 2000. Levels of Interleukin-1β, -8, and -10 and RANTES in Gingival Crevicular Fluid and Cell Populations in Adult Periodontitis Patients and the Effect of Periodontal Treatment. Journal of Periodontology 71: 1535–1545.CrossRefPubMed Gamonal, J., A. Acevedo, A. Bascones, O. Jorge, and A. Silva. 2000. Levels of Interleukin-1β, -8, and -10 and RANTES in Gingival Crevicular Fluid and Cell Populations in Adult Periodontitis Patients and the Effect of Periodontal Treatment. Journal of Periodontology 71: 1535–1545.CrossRefPubMed
65.
Zurück zum Zitat Ejeil, A., F. Gaultier, S. Igondjo-Tchen, K. Senni, B. Pellat, G. Godeau, et al. 2003. Are cytokines linked to collagen breakdown during periodontal disease progression? Journal of Periodontology 74: 196–201.CrossRefPubMed Ejeil, A., F. Gaultier, S. Igondjo-Tchen, K. Senni, B. Pellat, G. Godeau, et al. 2003. Are cytokines linked to collagen breakdown during periodontal disease progression? Journal of Periodontology 74: 196–201.CrossRefPubMed
66.
Zurück zum Zitat Stashenko, P., J. Jandinski, P. Fujiyoshi, J. Ryna, and S. Socransky. 1991. Tissue levels of bone resorptive cytokines in periodontal disease. Journal of Periodontology 62: 504–509.CrossRefPubMed Stashenko, P., J. Jandinski, P. Fujiyoshi, J. Ryna, and S. Socransky. 1991. Tissue levels of bone resorptive cytokines in periodontal disease. Journal of Periodontology 62: 504–509.CrossRefPubMed
67.
Zurück zum Zitat Gorska, R., H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, et al. 2003. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. Journal of Clinical Periodontology 30: 1046–1052.CrossRefPubMed Gorska, R., H. Gregorek, J. Kowalski, A. Laskus-Perendyk, M. Syczewska, et al. 2003. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. Journal of Clinical Periodontology 30: 1046–1052.CrossRefPubMed
68.
Zurück zum Zitat DiDonato, J., M. Hayakawa, D. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.CrossRefPubMed DiDonato, J., M. Hayakawa, D. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine-responsive IkB kinase that activates the transcription factor NF-κB. Nature 388: 548–554.CrossRefPubMed
69.
Zurück zum Zitat Mercurio, F. 1997. IKK-1 and IKK-2: Cytokine-activated IB kinases essential for NF-κB activation. Science 278: 860–866.CrossRefPubMed Mercurio, F. 1997. IKK-1 and IKK-2: Cytokine-activated IB kinases essential for NF-κB activation. Science 278: 860–866.CrossRefPubMed
70.
Zurück zum Zitat Zhang, J.-H., Z.-S. Shangguan, C. Chen, H.-J. Zhang, and Y. Lin. 2016. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Design, Development and Therapy 10: 1829–1835.CrossRefPubMedPubMedCentral Zhang, J.-H., Z.-S. Shangguan, C. Chen, H.-J. Zhang, and Y. Lin. 2016. Anti-inflammatory effects of guggulsterone on murine macrophage by inhibiting LPS-induced inflammatory cytokines in NF-κB signaling pathway. Drug Design, Development and Therapy 10: 1829–1835.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Robbins, J., B. Thomas, L. Tan, B. Choy, J. Arbiser, F. Berenbaum, et al. 2000. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis and Rheumatism 43: 2189–2201.CrossRefPubMed Robbins, J., B. Thomas, L. Tan, B. Choy, J. Arbiser, F. Berenbaum, et al. 2000. Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis and Rheumatism 43: 2189–2201.CrossRefPubMed
72.
Zurück zum Zitat Largo, R., M.A. Alvarez-Soria, I. Díez-Ortego, E. Calvo, O. Sánchez-Pernaute, J. Egido, et al. 2003. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 11: 290–298.CrossRefPubMed Largo, R., M.A. Alvarez-Soria, I. Díez-Ortego, E. Calvo, O. Sánchez-Pernaute, J. Egido, et al. 2003. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthritis and Cartilage 11: 290–298.CrossRefPubMed
73.
Zurück zum Zitat Page, R. 1998. The pathobiology of periodontal diseases may affect systemic diseases: Inversion of a paradigm. Annals of Periodontology 3: 108–120.CrossRefPubMed Page, R. 1998. The pathobiology of periodontal diseases may affect systemic diseases: Inversion of a paradigm. Annals of Periodontology 3: 108–120.CrossRefPubMed
74.
Zurück zum Zitat Gu, Y., H-M. Lee, N. Napolitano, M. Clemens, Y. Zhang, T. Sorsa, et al. 2013. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation. Mediators of Inflammation 2013: 1–10.CrossRef Gu, Y., H-M. Lee, N. Napolitano, M. Clemens, Y. Zhang, T. Sorsa, et al. 2013. 4-Methoxycarbonyl Curcumin: A Unique Inhibitor of Both Inflammatory Mediators and Periodontal Inflammation. Mediators of Inflammation 2013: 1–10.CrossRef
75.
Zurück zum Zitat Geerlings, S.E., and A.I. Hoepelman. 1999. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology 26: 259–265.CrossRefPubMed Geerlings, S.E., and A.I. Hoepelman. 1999. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology 26: 259–265.CrossRefPubMed
76.
Zurück zum Zitat Arakawa, T. 1995. Transcriptional Roles of Nuclear Factor kappaB and Nuclear Factor-Interleukin-6 in the Tumor Necrosis Factor alpha-Dependent Induction of Cyclooxygenase-2 in MC3T3-E1 Cells. The Journal of Biological Chemistry 270: 31315–31320.CrossRefPubMed Arakawa, T. 1995. Transcriptional Roles of Nuclear Factor kappaB and Nuclear Factor-Interleukin-6 in the Tumor Necrosis Factor alpha-Dependent Induction of Cyclooxygenase-2 in MC3T3-E1 Cells. The Journal of Biological Chemistry 270: 31315–31320.CrossRefPubMed
77.
Zurück zum Zitat Esteve, P.O., E. Chicoine, O. Robledo, F. Aoudjit, A. Descoteaux, E.F. Potworowski, et al. 2002. Protein Kinase C- Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. The Journal of Biological Chemistry 277: 35150–35155.CrossRefPubMed Esteve, P.O., E. Chicoine, O. Robledo, F. Aoudjit, A. Descoteaux, E.F. Potworowski, et al. 2002. Protein Kinase C- Regulates Transcription of the Matrix Metalloproteinase-9 Gene Induced by IL-1 and TNF-α in Glioma Cells via NF-κB. The Journal of Biological Chemistry 277: 35150–35155.CrossRefPubMed
78.
Zurück zum Zitat Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160: 403–409. Assuma, R., T. Oates, D. Cochran, S. Amar, and D.T. Graves. 1998. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. Journal of Immunology 160: 403–409.
79.
Zurück zum Zitat Graves, D., A. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69: 1419–1425.CrossRefPubMed Graves, D., A. Delima, R. Assuma, S. Amar, T. Oates, and D. Cochran. 1998. Interleukin-1 and tumor necrosis factor antagonists inhibit the progression of inflammatory cell infiltration toward alveolar bone in experimental periodontitis. Journal of Periodontology 69: 1419–1425.CrossRefPubMed
80.
Zurück zum Zitat Wei, S., H. Kitaura, P. Zhou, F.P. Ross, and S.L. Teitelbaum. 2005. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of Clinical Investigation 115: 282–290.CrossRefPubMedPubMedCentral Wei, S., H. Kitaura, P. Zhou, F.P. Ross, and S.L. Teitelbaum. 2005. IL-1 mediates TNF-induced osteoclastogenesis. The Journal of Clinical Investigation 115: 282–290.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Delima, A.J., T. Oates, R. Assuma, Z. Schwartz, D. Cochran, S. Amar, et al. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28: 233–240.CrossRefPubMed Delima, A.J., T. Oates, R. Assuma, Z. Schwartz, D. Cochran, S. Amar, et al. 2001. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. Journal of Clinical Periodontology 28: 233–240.CrossRefPubMed
82.
Zurück zum Zitat Sylvester, J., A. Liacini, W. Li, F. Dehnade, and M. Zafarullah. 2001. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Molecular Pharmacology 59: 1196–1205.PubMed Sylvester, J., A. Liacini, W. Li, F. Dehnade, and M. Zafarullah. 2001. Tripterygium wilfordii Hook F extract suppresses proinflammatory cytokine-induced expression of matrix metalloproteinase genes in articular chondrocytes by inhibiting activating protein-1 and nuclear factor-κB activities. Molecular Pharmacology 59: 1196–1205.PubMed
83.
Zurück zum Zitat Mengshol, J., M. Vincenti, Coon, A. Barchowsky, and C. Brimckerhoff. 2000. Interleukin-1 Induction of Collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-JUN N-terminal kinase, and nuclear factor κB differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.CrossRefPubMed Mengshol, J., M. Vincenti, Coon, A. Barchowsky, and C. Brimckerhoff. 2000. Interleukin-1 Induction of Collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-JUN N-terminal kinase, and nuclear factor κB differential regulation of collagenase 1 and collagenase 3. Arthritis and Rheumatism 43: 801–811.CrossRefPubMed
84.
Zurück zum Zitat Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, et al. 2001. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor a effect by proteasome inhibitors. Journal of Bone and Mineral Research 16: 1272–1280.CrossRefPubMed Sakai, T., F. Kambe, H. Mitsuyama, N. Ishiguro, K. Kurokouchi, M. Takigawa, et al. 2001. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor a effect by proteasome inhibitors. Journal of Bone and Mineral Research 16: 1272–1280.CrossRefPubMed
85.
Zurück zum Zitat Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed Liacini, A., J. Sylvester, W.Q. Li, and M. Zafarullah. 2002. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biology 21: 251–262.CrossRefPubMed
86.
Zurück zum Zitat Singh, R., S. Ahmed, N. Islam, V.M. Goldberg, and T.M. Haqqi. 2002. Epigallocatechin-3-gallate inhibits interleukin-1?-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis and Rheumatism 46: 2079–2086.CrossRefPubMed Singh, R., S. Ahmed, N. Islam, V.M. Goldberg, and T.M. Haqqi. 2002. Epigallocatechin-3-gallate inhibits interleukin-1?-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis and Rheumatism 46: 2079–2086.CrossRefPubMed
87.
Zurück zum Zitat Schmitz, J., D. Dean, Z. Schwartz, D. Cochran, G. Grant, R. Klebe, et al. 1996. Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry 61: 375–391.CrossRefPubMed Schmitz, J., D. Dean, Z. Schwartz, D. Cochran, G. Grant, R. Klebe, et al. 1996. Chondrocyte cultures express matrix metalloproteinase mRNA and immunoreactive protein; stromelysin-1 and 72 kDa gelatinase are localized in extracellular matrix vesicles. Journal of Cellular Biochemistry 61: 375–391.CrossRefPubMed
88.
Zurück zum Zitat Visse, R., and H. Nagase. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827–839.CrossRefPubMed Visse, R., and H. Nagase. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research 92: 827–839.CrossRefPubMed
89.
Zurück zum Zitat Shakibaei, M., T. John, G. Schulze-Tanzil, I. Lehmann, and A. Mobasheri. 2007. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochemical Pharmacology 73: 1434–1445.CrossRefPubMed Shakibaei, M., T. John, G. Schulze-Tanzil, I. Lehmann, and A. Mobasheri. 2007. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochemical Pharmacology 73: 1434–1445.CrossRefPubMed
90.
Zurück zum Zitat Hudson, M.P., P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, et al. 2006. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology 48: 15–20.CrossRefPubMed Hudson, M.P., P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, et al. 2006. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction. Journal of the American College of Cardiology 48: 15–20.CrossRefPubMed
91.
Zurück zum Zitat Krzeski, P., C. Buckland-Wright, G. Bálint, G.A. Cline, K. Stoner, R. Lyon, et al. 2007. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy 9: 1.CrossRef Krzeski, P., C. Buckland-Wright, G. Bálint, G.A. Cline, K. Stoner, R. Lyon, et al. 2007. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Research & Therapy 9: 1.CrossRef
92.
Zurück zum Zitat Bissett, D. 2005. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. Journal of Clinical Oncology 23: 842–849.CrossRefPubMed Bissett, D. 2005. Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. Journal of Clinical Oncology 23: 842–849.CrossRefPubMed
93.
Zurück zum Zitat Koide, N., A. Kaneda, T. Yokochi, and K. Umezawa. 2015. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. International Immunopharmacology 25: 162–168.CrossRefPubMed Koide, N., A. Kaneda, T. Yokochi, and K. Umezawa. 2015. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide. International Immunopharmacology 25: 162–168.CrossRefPubMed
94.
Zurück zum Zitat Abu-Amer, Y. 2013. NF-κB signaling and bone resorption. Osteoporosis International 24: 2377–2386.CrossRefPubMed Abu-Amer, Y. 2013. NF-κB signaling and bone resorption. Osteoporosis International 24: 2377–2386.CrossRefPubMed
95.
Zurück zum Zitat Jimi, E., K. Aoki, H. Saito, F. D’Acquisto, M.J. May, I. Nakamura, et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine 10: 617–624.CrossRefPubMed Jimi, E., K. Aoki, H. Saito, F. D’Acquisto, M.J. May, I. Nakamura, et al. 2004. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nature Medicine 10: 617–624.CrossRefPubMed
96.
Zurück zum Zitat Yang, S., X. Li, L. Cheng, H. Wu, C. Zhang, and K. Li. 2015. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochemical and Biophysical Research Communications 466: 615–621.CrossRefPubMed Yang, S., X. Li, L. Cheng, H. Wu, C. Zhang, and K. Li. 2015. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo. Biochemical and Biophysical Research Communications 466: 615–621.CrossRefPubMed
97.
Zurück zum Zitat Lee, J., and P. Young. 1996. Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. Journal of Leukocyte Biology 59: 152–157.PubMed Lee, J., and P. Young. 1996. Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. Journal of Leukocyte Biology 59: 152–157.PubMed
Metadaten
Titel
A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis
verfasst von
Muna S. Elburki
Carlos Rossa Jr
Morgana R. Guimarães-Stabili
Hsi-Ming Lee
Fabiana A. Curylofo-Zotti
Francis Johnson
Lorne M. Golub
Publikationsdatum
22.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0587-4

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.