Skip to main content
Erschienen in: Journal of NeuroEngineering and Rehabilitation 1/2014

Open Access 01.12.2014 | Research

A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements

verfasst von: Aaron J Young, Lauren H Smith, Elliott J Rouse, Levi J Hargrove

Erschienen in: Journal of NeuroEngineering and Rehabilitation | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Myoelectric control has been used for decades to control powered upper limb prostheses. Conventional, amplitude-based control has been employed to control a single prosthesis degree of freedom (DOF) such as closing and opening of the hand. Within the last decade, new and advanced arm and hand prostheses have been constructed that are capable of actuating numerous DOFs. Pattern recognition control has been proposed to control a greater number of DOFs than conventional control, but has traditionally been limited to sequentially controlling DOFs one at a time. However, able-bodied individuals use multiple DOFs simultaneously, and it may be beneficial to provide amputees the ability to perform simultaneous movements. In this study, four amputees who had undergone targeted motor reinnervation (TMR) surgery with previous training using myoelectric prostheses were configured to use three control strategies: 1) conventional amplitude-based myoelectric control, 2) sequential (one-DOF) pattern recognition control, 3) simultaneous pattern recognition control. Simultaneous pattern recognition was enabled by having amputees train each simultaneous movement as a separate motion class. For tasks that required control over just one DOF, sequential pattern recognition based control performed the best with the lowest average completion times, completion rates and length error. For tasks that required control over 2 DOFs, the simultaneous pattern recognition controller performed the best with the lowest average completion times, completion rates and length error compared to the other control strategies. In the two strategies in which users could employ simultaneous movements (conventional and simultaneous pattern recognition), amputees chose to use simultaneous movements 78% of the time with simultaneous pattern recognition and 64% of the time with conventional control for tasks that required two DOF motions to reach the target. These results suggest that when amputees are given the ability to control multiple DOFs simultaneously, they choose to perform tasks that utilize multiple DOFs with simultaneous movements. Additionally, they were able to perform these tasks with higher performance (faster speed, lower length error and higher completion rates) without losing substantial performance in 1 DOF tasks.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Van Der Niet OO, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK: The i-LIMB hand and the DMC plus hand compared: a case report. Prosthetics Orthot Int 2010, 34: 216. 10.3109/03093641003767207CrossRef Van Der Niet OO, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK: The i-LIMB hand and the DMC plus hand compared: a case report. Prosthetics Orthot Int 2010, 34: 216. 10.3109/03093641003767207CrossRef
2.
Zurück zum Zitat Medynski C, Rattray B: Bebionic prosthetic design. In 2011 MyoElectric Controls/Powered Prosthetics Symposium. Fredericton, New Brunswick, Canada; 2011. Medynski C, Rattray B: Bebionic prosthetic design. In 2011 MyoElectric Controls/Powered Prosthetics Symposium. Fredericton, New Brunswick, Canada; 2011.
3.
Zurück zum Zitat Resnik L: Research update: VA study to optimize DEKA arm. J Rehabil Res Dev 2010, 47: ix-x.PubMed Resnik L: Research update: VA study to optimize DEKA arm. J Rehabil Res Dev 2010, 47: ix-x.PubMed
4.
Zurück zum Zitat Harris A, Katyal K, Para M, Thomas J: Revolutionizing prosthetics software technology. In 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, AK; 2011:2877-2884.CrossRef Harris A, Katyal K, Para M, Thomas J: Revolutionizing prosthetics software technology. In 2011 IEEE International Conference on Systems, Man, and Cybernetics. Anchorage, AK; 2011:2877-2884.CrossRef
5.
Zurück zum Zitat Williams TW: Control of powered upper extremity prostheses. In Functional Restoration of Adults and Children with Upper Extremity Amputation. Edited by: Meier RH, Atkins DJ. New York, NY: Demos Medical Publishing; 2004:207-224. Williams TW: Control of powered upper extremity prostheses. In Functional Restoration of Adults and Children with Upper Extremity Amputation. Edited by: Meier RH, Atkins DJ. New York, NY: Demos Medical Publishing; 2004:207-224.
6.
Zurück zum Zitat Mogk JPM, Keir PJ: Crosstalk in surface electromyography of the proximal forearm during gripping tasks. J Electromyogr Kinesiol 2003, 13: 63-71. 10.1016/S1050-6411(02)00071-8CrossRefPubMed Mogk JPM, Keir PJ: Crosstalk in surface electromyography of the proximal forearm during gripping tasks. J Electromyogr Kinesiol 2003, 13: 63-71. 10.1016/S1050-6411(02)00071-8CrossRefPubMed
7.
Zurück zum Zitat Kuiken TA, et al.: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-28. 10.1001/jama.2009.116CrossRefPubMedPubMedCentral Kuiken TA, et al.: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009, 301: 619-28. 10.1001/jama.2009.116CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Dumanian GA, Ko JH, O’Shaughnessy KD, Kim PS, Wilson CJ, Kuiken TA: Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast Reconstr Surg 2009, 124: 863-869. 10.1097/PRS.0b013e3181b038c9CrossRefPubMed Dumanian GA, Ko JH, O’Shaughnessy KD, Kim PS, Wilson CJ, Kuiken TA: Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast Reconstr Surg 2009, 124: 863-869. 10.1097/PRS.0b013e3181b038c9CrossRefPubMed
9.
Zurück zum Zitat Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int 2004, 28: 245-53. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int 2004, 28: 245-53.
10.
Zurück zum Zitat Miller LA, et al.: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008, 89: 2057-65. 10.1016/j.apmr.2008.05.016CrossRefPubMedPubMedCentral Miller LA, et al.: Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery. Arch Phys Med Rehabil 2008, 89: 2057-65. 10.1016/j.apmr.2008.05.016CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Hudgins B, Parker P, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed Hudgins B, Parker P, Scott RN: A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 1993, 40: 82-94. 10.1109/10.204774CrossRefPubMed
12.
Zurück zum Zitat Oskoei MAaH H: Myoelectric control systems-a survey. Biomedical Signal Processing and Control 2007, 2: 275-294. 10.1016/j.bspc.2007.07.009CrossRef Oskoei MAaH H: Myoelectric control systems-a survey. Biomedical Signal Processing and Control 2007, 2: 275-294. 10.1016/j.bspc.2007.07.009CrossRef
13.
Zurück zum Zitat Englehart K, Hudgins B: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003, 50: 848-54. 10.1109/TBME.2003.813539CrossRefPubMed Englehart K, Hudgins B: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 2003, 50: 848-54. 10.1109/TBME.2003.813539CrossRefPubMed
14.
Zurück zum Zitat Scheme E, Englehart K: Electromyogram pattern recognition for the control of powered upper limb prostheses: state-of-the-art and challenges for clinical use. J Rehabil Res Dev 2011, 48: 643-659. 10.1682/JRRD.2010.09.0177CrossRefPubMed Scheme E, Englehart K: Electromyogram pattern recognition for the control of powered upper limb prostheses: state-of-the-art and challenges for clinical use. J Rehabil Res Dev 2011, 48: 643-659. 10.1682/JRRD.2010.09.0177CrossRefPubMed
15.
Zurück zum Zitat Hargrove LJ, Englehart K, Hudgins B: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 2007, 54: 847-853.CrossRefPubMed Hargrove LJ, Englehart K, Hudgins B: A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 2007, 54: 847-853.CrossRefPubMed
16.
Zurück zum Zitat Huang YH, Englehart KB, Hudgins B, Chan ADC: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng 2004, 52: 1801-1811.CrossRef Huang YH, Englehart KB, Hudgins B, Chan ADC: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans Biomed Eng 2004, 52: 1801-1811.CrossRef
17.
Zurück zum Zitat Hargrove L, Scheme E, Englehart K, Hudgins B: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 49-57.CrossRefPubMed Hargrove L, Scheme E, Englehart K, Hudgins B: Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 49-57.CrossRefPubMed
18.
Zurück zum Zitat Hargrove L, Simon A, Lock B, Kuiken T: Pattern recognition control outperforms conventional control in upper limb patients with targeted muscle reinnervation. In American Academy of Orthotists & Prosthetists 39th Academy Annual Meeting and Scientific Symposium. Orlando, Fl; 2013. Hargrove L, Simon A, Lock B, Kuiken T: Pattern recognition control outperforms conventional control in upper limb patients with targeted muscle reinnervation. In American Academy of Orthotists & Prosthetists 39th Academy Annual Meeting and Scientific Symposium. Orlando, Fl; 2013.
19.
Zurück zum Zitat Young AJ, Smith LH, Rouse EJ, Hargrove LJ: Classification of simultaneous movements using surface EMG pattern recognition. Biomedical Engineering, IEEE Transactions on 2013, 60: 1250-1258.CrossRef Young AJ, Smith LH, Rouse EJ, Hargrove LJ: Classification of simultaneous movements using surface EMG pattern recognition. Biomedical Engineering, IEEE Transactions on 2013, 60: 1250-1258.CrossRef
20.
Zurück zum Zitat Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B: Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 424-432.CrossRefPubMed Baker JJ, Scheme E, Englehart K, Hutchinson DT, Greger B: Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans Neural Syst Rehabil Eng 2010, 18: 424-432.CrossRefPubMed
21.
Zurück zum Zitat Davidge K: Multifunction myoelectric control using a linear electrode array. In Masters of Science in Engineering. University of New Brunswick, Electrical and Computer Engineering; 1999. Davidge K: Multifunction myoelectric control using a linear electrode array. In Masters of Science in Engineering. University of New Brunswick, Electrical and Computer Engineering; 1999.
22.
Zurück zum Zitat Young A, Smith L, Rouse E, Hargrove L: A new hierarchical approach for simultaneous control of multi-joint powered prostheses. In IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome, Italy; 2012. Young A, Smith L, Rouse E, Hargrove L: A new hierarchical approach for simultaneous control of multi-joint powered prostheses. In IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome, Italy; 2012.
23.
Zurück zum Zitat Lowery MM, Stoykov NS, Taflove A, Kuiken TA: A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 2002, 49: 446-454. 10.1109/10.995683CrossRefPubMed Lowery MM, Stoykov NS, Taflove A, Kuiken TA: A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 2002, 49: 446-454. 10.1109/10.995683CrossRefPubMed
24.
Zurück zum Zitat Simon A, Lock B, Stubblefield K: Patient training for functional use of pattern recognition-controlled prostheses. Journal of Prosthetics & Orthotics 2012, 24: 56-64. 10.1097/JPO.0b013e3182515437CrossRef Simon A, Lock B, Stubblefield K: Patient training for functional use of pattern recognition-controlled prostheses. Journal of Prosthetics & Orthotics 2012, 24: 56-64. 10.1097/JPO.0b013e3182515437CrossRef
25.
Zurück zum Zitat Smith LH, Hargrove LJ, Lock BA, Kuiken TA: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 2011, 19: 186-192.CrossRefPubMedPubMedCentral Smith LH, Hargrove LJ, Lock BA, Kuiken TA: Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay. IEEE Trans Neural Syst Rehabil Eng 2011, 19: 186-192.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Tkach D, Huang H, Kuiken T: Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil 2010, 7: 1-21. 10.1186/1743-0003-7-1CrossRef Tkach D, Huang H, Kuiken T: Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil 2010, 7: 1-21. 10.1186/1743-0003-7-1CrossRef
27.
Zurück zum Zitat Simon A, Hargrove L, Lock BA, Kuiken T: Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011, 18: 619-628.CrossRef Simon A, Hargrove L, Lock BA, Kuiken T: Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011, 18: 619-628.CrossRef
28.
Zurück zum Zitat Simon A, Hargrove L, Lock BA, Kuiken T: A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control. IEEE Trans Biomed Eng 2011, 58: 2360-2368.CrossRef Simon A, Hargrove L, Lock BA, Kuiken T: A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control. IEEE Trans Biomed Eng 2011, 58: 2360-2368.CrossRef
29.
Zurück zum Zitat Miller L, Stubblefield K, Finucane S: Outcome measure results of pattern recognition control of a multifunction hand-wrist system: a case study. In Myelectric Controls Symposium. Fredericton, CA; 2011. Miller L, Stubblefield K, Finucane S: Outcome measure results of pattern recognition control of a multifunction hand-wrist system: a case study. In Myelectric Controls Symposium. Fredericton, CA; 2011.
Metadaten
Titel
A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements
verfasst von
Aaron J Young
Lauren H Smith
Elliott J Rouse
Levi J Hargrove
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of NeuroEngineering and Rehabilitation / Ausgabe 1/2014
Elektronische ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-11-5

Weitere Artikel der Ausgabe 1/2014

Journal of NeuroEngineering and Rehabilitation 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie