Skip to main content
Erschienen in: Journal of Radiation Oncology 3/2018

10.05.2018 | Original Research

A comprehensive analysis of clinical trials including both immunotherapy and radiation therapy

verfasst von: Dustin Boothe, Joseph W. Clyde, Michael Christensen, Shiven B. Patel, Shane Lloyd

Erschienen in: Journal of Radiation Oncology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Radiation therapy (RT) may work synergistically with cancer immunotherapies but clinical trial data is needed to validate this paradigm. We isolated the portfolio of trials that investigate the primary immunomodulatory properties of RT and examined recent trends in clinical trials that combine immunotherapy and RT (ITRT).

Methods

We queried clinicaltrials.​gov for trials initiated since 2002 using both radiation and immunotherapy as mandated interventions. We designated the trials that examine the specific aspects of RT or its abscopal properties as “Primary RT Immunomodulation” trials. Chi-squared analysis determined differences between primary RT immunomodulation trials and those that incorporate RT as a secondary intervention. Joinpoint regression modeling determined the rate of change of the introduction of new trials over time.

Results

One hundred and ninety trials met inclusion criteria. Targeted immunostimulatory agents, including checkpoint inhibitors, were the most common immunotherapy (n = 79 [41.6%]). Sixty-six (34.7%) trials included RT as the primary intervention, with 50 (75.6%) of these utilizing stereotactic body radiation (SBRT). All ITRT trials increased at a rate of 14.8% per year. Primary RT immunomodulation trials increased at a rate of 26.8% per year. Primary RT immunomodulation trials were more likely to utilize targeted immunostimulatory agents (p < 0.01), and SBRT (p < 0.01), and more likely to involve metastatic sites (p < 0.01). The number of ITRT studies increased drastically in the latest two years of the study.

Conclusion

The number of new ITRT clinical trials is increasing rapidly. This increase in quantity may improve the clinical application of the immunomodulatory properties of RT.
Literatur
1.
Zurück zum Zitat Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272CrossRef Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272CrossRef
2.
Zurück zum Zitat Pan HY, Haffty BG, Falit BP, Buchholz TA, Wilson LD, Hahn SM, Smith BD (2016) Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys 96:493–500CrossRef Pan HY, Haffty BG, Falit BP, Buchholz TA, Wilson LD, Hahn SM, Smith BD (2016) Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys 96:493–500CrossRef
3.
Zurück zum Zitat DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409CrossRef DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409CrossRef
4.
Zurück zum Zitat Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85:293–295CrossRef Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85:293–295CrossRef
5.
Zurück zum Zitat Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Fika E, Yong WH, Mischel PS, Liau LM et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol Off J Am Soc Clin Oncol 29:142–148CrossRef Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Fika E, Yong WH, Mischel PS, Liau LM et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol Off J Am Soc Clin Oncol 29:142–148CrossRef
6.
Zurück zum Zitat Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37CrossRef Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37CrossRef
7.
Zurück zum Zitat Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327CrossRef Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327CrossRef
8.
Zurück zum Zitat Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529CrossRef Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507–529CrossRef
9.
Zurück zum Zitat Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6(Suppl 1):S2–S7PubMed Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6(Suppl 1):S2–S7PubMed
10.
Zurück zum Zitat La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB (2015) Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy 35:963–976CrossRef La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB (2015) Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy 35:963–976CrossRef
11.
Zurück zum Zitat Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Esther H et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRef Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Esther H et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135CrossRef
12.
Zurück zum Zitat Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384CrossRef Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384CrossRef
13.
Zurück zum Zitat Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, Raben D, Baselga J, Spencer SA, Zhu J, Youssoufian H, Rowinsky EK, Ang KK (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–28CrossRef Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, Raben D, Baselga J, Spencer SA, Zhu J, Youssoufian H, Rowinsky EK, Ang KK (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–28CrossRef
14.
Zurück zum Zitat Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Anthony M et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199CrossRef Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Anthony M et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199CrossRef
15.
Zurück zum Zitat Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Antoine FC, Hoang-Xuan K, Kavan P, Cernea D et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722CrossRef Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Antoine FC, Hoang-Xuan K, Kavan P, Cernea D et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722CrossRef
17.
Zurück zum Zitat Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, Souhami L, Grigsby P, Gordon W Jr, Alberts DS (2000) Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol Off J Am Soc Clin Oncol 18:1606–1613CrossRef Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, Souhami L, Grigsby P, Gordon W Jr, Alberts DS (2000) Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol Off J Am Soc Clin Oncol 18:1606–1613CrossRef
18.
Zurück zum Zitat Kim HJ, Fay MP, Feuer EJ, Midthune DN (2000) Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 19(3):335–351CrossRef Kim HJ, Fay MP, Feuer EJ, Midthune DN (2000) Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 19(3):335–351CrossRef
19.
Zurück zum Zitat Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780CrossRef Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780CrossRef
20.
Zurück zum Zitat Burnette B, Fu YX, Weichselbaum RR (2012) The confluence of radiotherapy and immunotherapy. Front Oncol 2:143CrossRef Burnette B, Fu YX, Weichselbaum RR (2012) The confluence of radiotherapy and immunotherapy. Front Oncol 2:143CrossRef
21.
Zurück zum Zitat Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRef Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRef
22.
Zurück zum Zitat Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grobb JJ et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526CrossRef Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grobb JJ et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526CrossRef
23.
Zurück zum Zitat Deng L, Liang H, Burnette B, Bechett M, Darga T, Weichselbaum R, Fu XY (2014) Irradiation and anti PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695CrossRef Deng L, Liang H, Burnette B, Bechett M, Darga T, Weichselbaum R, Fu XY (2014) Irradiation and anti PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695CrossRef
24.
Zurück zum Zitat Liu SZ, Jin SZ, Liu XD, Sun YM (2001) Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol 2:8CrossRef Liu SZ, Jin SZ, Liu XD, Sun YM (2001) Role of CD28/B7 costimulation and IL-12/IL-10 interaction in the radiation-induced immune changes. BMC Immunol 2:8CrossRef
25.
Zurück zum Zitat Liang H, Deng L, Chmura S, Burnette B, Liadis N, Darga T, Bechett MA, Lingen MW, Witt M, Weichselbaum et al (2013) Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J Immunol 190(11):5874–5881CrossRef Liang H, Deng L, Chmura S, Burnette B, Liadis N, Darga T, Bechett MA, Lingen MW, Witt M, Weichselbaum et al (2013) Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J Immunol 190(11):5874–5881CrossRef
26.
Zurück zum Zitat Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726CrossRef Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726CrossRef
27.
Zurück zum Zitat Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870CrossRef Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870CrossRef
28.
Zurück zum Zitat Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, Schollnberger H, Hildebrandt G, Rodel C (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19(12):1741–1750CrossRef Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, Schollnberger H, Hildebrandt G, Rodel C (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19(12):1741–1750CrossRef
29.
Zurück zum Zitat Burnette B, Weichselbaum RR (2013) Radiation as an immune modulator. Semin Radiat Oncol 23:273–280CrossRef Burnette B, Weichselbaum RR (2013) Radiation as an immune modulator. Semin Radiat Oncol 23:273–280CrossRef
30.
Zurück zum Zitat Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5(2):403–416CrossRef Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5(2):403–416CrossRef
31.
Zurück zum Zitat Hodge JW, Kwilas A, Ardiani A, Gameiro SR (2013) Attacking malignant cells that survive therapy: exploiting immunogenic modulation. Oncoimmunology 2(12):e26937CrossRef Hodge JW, Kwilas A, Ardiani A, Gameiro SR (2013) Attacking malignant cells that survive therapy: exploiting immunogenic modulation. Oncoimmunology 2(12):e26937CrossRef
32.
Zurück zum Zitat Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899CrossRef Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899CrossRef
33.
Zurück zum Zitat Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349CrossRef Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349CrossRef
34.
Zurück zum Zitat Kim JY, Son YO, Park SW, Bae JH, Chung JS, KIM HH, Chung BS, Kim SH, Kang CD (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484CrossRef Kim JY, Son YO, Park SW, Bae JH, Chung JS, KIM HH, Chung BS, Kim SH, Kang CD (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38(5):474–484CrossRef
35.
Zurück zum Zitat Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, Swetter SM, Knox SJ (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407CrossRef Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, Swetter SM, Knox SJ (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407CrossRef
36.
Zurück zum Zitat Weber J (2010) Immune checkpoint proteins: a new therapeutic paradigm for cancer—preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37(5):430–439CrossRef Weber J (2010) Immune checkpoint proteins: a new therapeutic paradigm for cancer—preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37(5):430–439CrossRef
37.
Zurück zum Zitat Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(2 Pt 1):728–734 Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(2 Pt 1):728–734
38.
Zurück zum Zitat Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211PubMed Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211PubMed
39.
Zurück zum Zitat Bouquet F, Pal A, Pilones KA, Kemaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, Dewyngaert JK, Formenti SC et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 17(21):6754–6765CrossRef Bouquet F, Pal A, Pilones KA, Kemaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, Dewyngaert JK, Formenti SC et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 17(21):6754–6765CrossRef
40.
Zurück zum Zitat Sharabi AB, Tran PT, Lim M, Drake CG, Deweese TL (2015) Stereotactic radiation therapy combined with immunotherapy: augmenting the role of radiation in local and systemic treatment. Oncol (Williston Park) 29(5):331–340 Sharabi AB, Tran PT, Lim M, Drake CG, Deweese TL (2015) Stereotactic radiation therapy combined with immunotherapy: augmenting the role of radiation in local and systemic treatment. Oncol (Williston Park) 29(5):331–340
41.
Zurück zum Zitat Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602CrossRef Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24(5):589–602CrossRef
42.
Zurück zum Zitat Miller GM, Kim DW, Andres ML, Green LM, Gridley DS (2003) Changes in the activation and reconstitution of lymphocytes resulting from total-body irradiation correlate with slowed tumor growth. Oncology 65(3):229–241CrossRef Miller GM, Kim DW, Andres ML, Green LM, Gridley DS (2003) Changes in the activation and reconstitution of lymphocytes resulting from total-body irradiation correlate with slowed tumor growth. Oncology 65(3):229–241CrossRef
43.
Zurück zum Zitat Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595CrossRef Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595CrossRef
44.
Zurück zum Zitat Ishihara D, Pop L, Takeshima T, Iyengar P, Hannan R (2017) Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 281–298CrossRef Ishihara D, Pop L, Takeshima T, Iyengar P, Hannan R (2017) Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 281–298CrossRef
45.
Zurück zum Zitat Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310CrossRef Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310CrossRef
46.
Zurück zum Zitat Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O'Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993PubMed Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O'Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993PubMed
47.
Zurück zum Zitat Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S et al (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21:3727–3739CrossRef Filatenkov A, Baker J, Mueller AM, Kenkel J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S et al (2015) Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 21:3727–3739CrossRef
48.
Zurück zum Zitat Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRef Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRef
49.
Zurück zum Zitat Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRef Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRef
50.
Zurück zum Zitat Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330CrossRef Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330CrossRef
Metadaten
Titel
A comprehensive analysis of clinical trials including both immunotherapy and radiation therapy
verfasst von
Dustin Boothe
Joseph W. Clyde
Michael Christensen
Shiven B. Patel
Shane Lloyd
Publikationsdatum
10.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Radiation Oncology / Ausgabe 3/2018
Print ISSN: 1948-7894
Elektronische ISSN: 1948-7908
DOI
https://doi.org/10.1007/s13566-018-0351-x

Weitere Artikel der Ausgabe 3/2018

Journal of Radiation Oncology 3/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.