Skip to main content
Erschienen in: BMC Medicine 1/2022

Open Access 01.12.2022 | Research article

A cross-sectional study evidences regulations of leukocytes in the colostrum of mothers with obesity

verfasst von: Raúl Piñeiro-Salvador, Eduardo Vazquez-Garza, José Antonio Cruz-Cardenas, Cuauhtémoc Licona-Cassani, Gerardo García-Rivas, Jorge Moreno-Vásquez, Mario René Alcorta-García, Victor Javier Lara-Diaz, Marion E. G. Brunck

Erschienen in: BMC Medicine | Ausgabe 1/2022

Abstract

Background

Breastmilk is a dynamic fluid whose initial function is to provide the most adapted nutrition to the neonate. Additional attributes have been recently ascribed to breastmilk, with the evidence of a specific microbiota and the presence of various components of the immune system, such as cytokines and leukocytes. The composition of breastmilk varies through time, according to the health status of mother and child, and altogether contributes to the future health of the infant. Obesity is a rising condition worldwide that creates a state of systemic, chronic inflammation including leukocytosis. Here, we asked whether colostrum, the milk produced within the first 48 h post-partum, would contain a distinct leukocyte composition depending on the body mass index (BMI) of the mother.

Methods

We collected peripheral blood and colostrum paired samples from obese (BMI > 30) and lean (BMI < 25) mothers within 48 h post-partum and applied a panel of 6 antibodies plus a viability marker to characterize 10 major leukocyte subpopulations using flow cytometry.

Results

The size, internal complexity, and surface expression of CD45 and CD16 of multiple leukocyte subpopulations were selectively regulated between blood and colostrum irrespective of the study groups, suggesting a generalized cell-specific phenotype alteration. In obesity, the colostrum B lymphocyte compartment was significantly reduced, and CD16+ blood monocytes had an increased CD16 expression compared to the lean group.

Conclusions

This is the first characterization of major leukocyte subsets in colostrum of mothers suffering from obesity and the first report of colostrum leukocyte subpopulations in Latin America. We evidence various significant alterations of most leukocyte populations between blood and colostrum and demonstrate a decreased colostrum B lymphocyte fraction in obesity. This pioneering study is a stepping stone to further investigate active immunity in human breastmilk.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12916-022-02575-y.
Raúl Piñeiro-Salvador and Eduardo Vazquez-Garza contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body mass index
FBS
Fetal bovine serum
FcgIIIR
Fragment crystallizable gamma III receptor
fMLP
N-Formylmethionyl-leucyl-phenylalanine
FMO
Fluorescence minus one
FSC
Forward scatter
Ig
Immunoglobulin
IgA
Immunoglobulin A
IgG
Immunoglobulin G
IgM
Immunoglobulin M
MFI
Median fluorescence intensity
PBS
Phosphate-buffered saline
sIgA
Secretory IgA
SSC
Side scatter
TJ
Tight junctions

Background

Human breastmilk has been historically regarded as a source of nutrition for infants. Recent studies have evidenced that breastmilk is a complex and dynamic tissue that provides newborns with components involved with functions beyond nutrition, such as the breastmilk microbiota and mother-derived cytokines and leukocytes [1]. The production and composition of breastmilk are partially modulated by external parameters such as the mother’s diet, stress levels, or health status [24].
Obesity is an expanding public health problem worldwide that can be regarded as a state of low-grade systemic inflammation where larger adipocytes secrete proinflammatory mediators and recruit leukocytes [5, 6]. Individuals suffering from obesity exhibit altered peripheral blood cell counts with increased risks of leukocytosis, and modulations in the phenotypes of lymphocyte subpopulations [7, 8]. Obesity directly hampers breastfeeding by various mechanisms, including delayed lactogenesis, decreased milk supply, and issues in adequately positioning the infant, all of which have been previously described [911]. In addition, obesity impacts micro- and macronutrient breastmilk composition and selectively regulates its abundance in soluble immune components. Higher levels of immunoglobulin A (IgA) and secretory IgA (sIgA) concentrations were found in obese serum and colostrum, respectively, while IgG and IgM concentrations were unaffected by maternal body mass index (BMI) [12]. The relevance of increased sIgA in obese colostrum remains to be elucidated. It may be a consequence of the observed disruption of the microbiota in these samples. In Mexico, the colostrum from obese mothers overall contains a microbiota with more bacterial species (increased richness) and more diversity between species abundances (decreased evenness) compared to colostrum microbiota from lean mothers [13, 14]. Obese colostrum microbiota also include more potentially pathogenic bacteria genus such as Staphylococcus [14]. This may also partly explain the regulation of immune soluble factors described in obese breastmilk, including decreased TGF-β and sCD14, while IL-1 β, IL-6, IL-8, IL-10, and TNF- α concentrations were not significantly altered [1517].
While historical empirical observations have associated breastfeeding with a moderately decreased risk of suffering from obesity later in life, in these studies, the weight status of breastfeeding mothers was not investigated and may be a confounding factor skewing conclusions [18, 19]. Indeed, overall maternal obesity is associated with multiple immune-mediated negative outcomes for infants, including neurodevelopmental disorders and increased morbidity [2022]. To date, these outcomes have been discussed as consequences of epigenetic regulations and gut microbiota alterations in early life [22]. Recent evidence suggests breastmilk-transferred immune factors may impact infant health as the transfer of immune factors through breastmilk may also promote the development of autoimmune conditions [23, 24]. However, the consequences of obesity on the majority of breastmilk leukocyte populations have not been reported to date [25].
As alterations in breastmilk immune components could impact infants’ future health, we sought to investigate the consequence of obesity on breastmilk leukocytes in a cross-section observational study [25]. The primary objective of this study was to explore possible variations in leukocyte proportions in the colostrum of mothers suffering from obesity. A secondary objective of this work was to compare the proportions and characteristics of leukocytes depending on the tissue of origin: colostrum or peripheral blood.

Methods

Study design and participants

We conducted a cross-sectional study of leukocyte subpopulations in blood and colostrum of mothers with BMI <25 and BMI >30. This study was approved by the Ethics Committee of the Hospital Regional Materno Infantil, Servicios de Salud de Nuevo León, Mexico, and the Institutional Review Board at Escuela de Medicina y Ciencias de la Salud, TecSalud, in Monterrey, Mexico, with the ID CarMicrobioLHum-2018. All samples were collected and used following signed informed consent and anonymization, between October 2020 and March 2021 at the Hospital Regional Materno Infantil, in Nuevo León, Mexico. Briefly, adult mothers between 18 and 34 years of age were invited to participate during the first obstetric consultation occurring during the first trimester of gestation. Participants were allocated to the obese cohort (BMI >30) or lean cohort (BMI <25), according to declared pre-pregnancy weight during the first visit and in accordance with the World Health Organization classification guidelines [26]. Eligibility to participate in the study was determined based on (1) mother’s age between 18 and 34 years, (2) adequate prenatal visits without any adverse event during pregnancy, (3) pre-pregnancy BMI <25 or >30, (4) term infant, and (5) willingness to participate. Exclusion criteria included (1) having received antibiotics anytime during the 3-month period before birth, or having received a prolonged antibiotic treatment (>3 months) anytime during pregnancy; (2) having received immunosuppressive doses of steroids during pregnancy; (3) previous monoclonal antibody treatment; (4) history of chronic disease (outside of obesity); (5) suffering from any dietary disease; (6) episodes of diarrhea during the last 2 weeks of pregnancy; (7) history of surgery within 12 months prior to pregnancy; and (8) history of antineoplastic treatment. Elimination criteria included (1) having received antibiotics for >24 h post-birth, (2) necessity of intensive care unit admission of the neonate, and (3) any additional cause impeding sample collection. Oxytocin was not used during the first stages of labor. However, oxytocin was prescribed in 34 of 41 subjects (84%), during the first 8 h after delivery, as per international recommendations [27].
Regarding the variables of the study, the main independent variable and hypothesized predictor was the BMI, calculated from self-reported pre-pregnancy weight and size. Additional variables collected or measured in this work included participant’s age, primiparity (yes/no), infant gender, gestational age at birth, type of delivery (vaginal/C-section), weight of infant at birth, volume of colostrum obtained, and frequency of leukocyte subpopulations in blood and colostrum samples. Additional details are included in the study’s STROBE statement (Sup. Table 1) [26, 2831].
Participants provided blood and colostrum samples on a single occasion, within 2 days of giving birth. Briefly, 3–4 ml of peripheral blood was collected in K2-EDTA vacutainers and placed on ice until processing. Following washing of the breast and nipple area using soap and water, 1–3 ml of colostrum per donor was obtained through pump-assisted milk extraction and immediately stored on ice. All samples were processed and acquired on the flow cytometer within 3 h of collection.

Leukocyte enrichment from colostrum

Around 1 ml of colostrum was processed for cell enrichment prior to staining for flow cytometry. Briefly, samples were centrifuged at 400 g for 15 min at 4°C. The supernatant was discarded, and the cell pellet was washed twice with PBS/2% FBS. Cells were counted using trypan blue for viability assessment and aliquoted for flow cytometry staining.

Colostrum-enriched cell staining

Depending on availability, between 200,000 and 1 × 106 cells were used for staining, and the same number of cells per sample was kept as unstained control. The same antibody lots were used to stain both types of tissues and antibody titration optimizations were performed for each tissue type to optimize resolution of fluorescence intensity over background. Cells were resuspended in the antibody master mix, which consisted of 2.5 μL mouse anti-human CD2-APC (BD® cat. 560642), 5 μL mouse anti-human CD16-APC-H7 (BD® cat. 560195), 5 μL mouse anti-human CD19-V450 (BD® cat. 560353), 2.5 μL mouse anti-human CD36-PE (BD® cat. 555455), 5 μL mouse anti-human CD45-V500 (BD® cat. 560777), and 1.25 μL rat anti-human CD294-Alexa Fluor 647 (BD® cat. 558042), in a final 100-μL staining volume with PBS + 2% FBS per 106 cells. Samples were then incubated for 30 min on ice in the dark, then washed and resuspended in PBS/2% FBS. Ten min before acquisition, propidium iodide (BD® cat. 556463) was added to the tube as per the manufacturer’s recommendations.

Peripheral blood staining

Fifty microliters of anticoagulated peripheral blood was stained using 2.5 μL CD2-APC, 1.25 μL CD16-APC-H7, 5μL CD19-V450, 2.5 μL CD36-PE, 1.25 μL CD45-V500, and 1.25 μL CD294-Alexa Fluor 647, in a final 100-μL staining volume with PBS + 2% FBS for 30 minutes on ice, in the dark. Samples were then subjected to erythrocyte lysis using BD® Pharm Lyse solution (BD® cat. 555899) as per the manufacturer’s instructions. Ten minutes before acquisition propidium iodide was added to tubes as per the manufacturer’s recommendations.

Flow cytometry data acquisition

Samples were analyzed on a BD® FACSCelesta flow cytometer fitted with 405-nm, 488-nm, and 633-nm lasers and operated through the BD® FACSDiva software v.8. Cytometer settings were checked prior to all acquisition using CS&T beads (BD® cat. 642412) according to manufacturer’s instructions. Compensation controls were prepared using compensation beads (anti-mouse Ig, K Neg Control compensation, BD® cat. 552843) following the manufacturer’s recommendations. At least 30,000 uncompensated events were recorded from every sample, with the forward scatter (FSC) event threshold adjusted to 35,000 for peripheral blood and 28,000 for colostrum samples.

Flow cytometry data analysis

Cytometry data were analyzed using FlowJo software v.10 (Treestar LLC). Automatic compensation was performed prior to analysis, with a compensation matrix generated at each acquisition. A strict quality control workflow was established to ensure the exclusion of suboptimal quality samples that may artificially skew the final analysis (Fig. S1) [32]. Briefly, samples had to exhibit a stable flow stream (Side Scatter (SSC) vs. time), debris was excluded on SSC/FSC plot, sample viability >85% from the singlet gate, and >10,000 leukocytes (CD45+ cells) acquired, to be included in the final analysis and comparisons [33]. The gating strategy applied to discriminate the leukocyte populations has been previously described and is summarized in Table 1 [31, 34]. Fluorescence minus one (FMO) controls of colostrum and blood samples were used to adjust gates, which were then applied to all samples.
Table 1
Flow cytometry qualitative thresholds considered to identify the investigated leukocyte populations
Cell type
Phenotype
Granulocytes
 
Neutrophils
SSCbright, CD45+, CD16+
Eosinophils
SSCbright, CD45+, CD16-, CD2 / CD294+
Basophils
SSCint, CD45+, CD16-, CD2 / CD294+
Lymphoid lineage cells
 
Noncytotoxic T lymphocytes
SSCdim, CD45+, CD16-, CD2 / CD294+
Cytotoxic T/NK lymphocytes
SSCdim, CD45+, CD16+, CD2 / CD294+
B lymphocytes
SSCdim, CD45+, CD16-, CD2 / CD294-, CD19+
Monocytes
 
CD16- (classical) monocytes
SSCint, CD45+, CD16-, CD2 / CD294-, CD19-, CD36+ CD16-
CD16+ (non-classical) monocytes
SSCint, CD45+, CD16+, CD2 / CD294-, CD19-, CD36+, CD16+
Precursors/Immature cells
 
Myeloid precursors
SSCdim, CD45+, CD19-, CD2/ CD294-
Immature granulocytes
SSCbright, CD45+, CD16-, CD2 / CD294-

Statistical analysis

Proportions of leukocyte subsets were calculated as % of CD45+ live cells per sample. Shapiro-Wilk tests were used to investigate data normality with α=0.05. Wilcoxon matched-pairs tests were used to compare intra-individual leukocyte proportions in paired blood-colostrum samples. Mann-Whitney U tests were used to compare leukocyte % and median fluorescence intensity (MFI) of surface markers in colostrum between study groups. Student t-tests were used to compare leukocyte proportions in blood samples. All statistical analyses were performed using GraphPad Prism v. 9, or SPSS® v. 26, IBM Corporation, Armonk, NY, USA. Graphs are showing discrete data and mean with SD and p values in the APA format.

Results

A total of 41 participants were enrolled in this study, with 21 mothers allocated to the lean BMI group and 20 mothers allocated to the obese BMI group. Post-acquisition quality filters on flow cytometry preliminary data restricted the final analysis to 21 blood samples and 17 colostrum samples in the lean BMI group, and 20 blood samples and 11 colostrum samples in the obese BMI group (Sup. Fig. 1). An overall summary of the clinical variables of each study group is presented in Table 2. As per the study design, the average BMI was significantly larger in the obese mothers’ cohort (34.9 vs. 22.8 in the lean cohort, p<0.001). There was no difference in maternal age, gestational age at delivery, mode of delivery (C-section or vaginal), gender of infant, weight of infant at birth, or primiparity between groups, and post-quality filter sample exclusion did not unearth additional difference between groups (Sup. Table 2 and 3). The average volume of collected colostrum was significantly smaller in the obese mothers’ cohort (1.42 ml vs 2.11 ml).
Table 2
Summary of demographic and clinical parameters of study participants included in the blood analysis
 
Cohort
p
Variable
Lean 
Obese
 
N total
21
20
 
Maternal age (years), median (IQR)
23 (22-26)
26 (21-29)
0.82
Maternal BMI (kg/m2), median (IQR)
22.6 (21.1-23.9)
34.5 (33.7-35.4)
<0.001
Primiparous, N (%)
6 (29)
6 (30)
0.09
Infant gender, N females (% total)
9 (43)
8 (40)
1
Gestational age (weeks), median (IQR)
39 (38-40)
39 (38-40)
0.09
Delivery type, N V (%)
15 (71)
13 (65)
0.74
Infant birth weight (g), median (IQR)
3340 (3000-3850)
3412 (3036-3619)
0.46
Volume of colostrum obtained (mL), median (IQR)
2.0 (1.5-2.5)
1.5 (1.0-1.7)
0.008
N number of events, BMI body mass index, V vaginal births, IQR interquartile range. Statistically significant p values for the calculated differences are depicted in bold type. Continuous data were analyzed with Mann-Whitney’s U test, and proportions were compared with Fisher’s exact test

No variation is observed in blood leukocyte proportions between cohorts

Ten leukocyte subpopulations were confidently identified in peripheral blood using the gating strategy presented in Fig. 1. For all leukocyte proportions measured, there was no difference between the lean and obese cohorts (Fig. 2). Median percentages for each subpopulation, and results of statistical comparisons are presented in Table 3.
Table 3
Summary of median leukocyte subset percentages identified in colostrum and peripheral blood of lean and obese cohorts
 
Lean
Obese
Comparisons
Colostrum
Blood
Colostrum
Blood
 Lean
Obese
Colostrum
Blood
Total leukocytes
60.30 (43.00-80.00)
96.50 (91.80-98.50)
62 (41.00-87.90)
97.15 (93.70-98.28)
p=0.54, p=0.80
p <0.0001, p <0.0001
Neutrophils
66.40 (56.95-74.10)
78.2 (70.25-80.05)
70 (61.4-79.5)
73.15 (68.25-78.15)
p=0.35, p=0.48
p=0.007, p=0.51
Eosinophils
0.35 (0.23-0.60)
0.007 (0.004-0.04)
0.34 (0.14-0.67)
0.02 (0.003-0.06)
p=0.84, p=0.23
p<0.0001, p<0.0001
Basophils
0.65 (0.22-0.77)
0.3 (0.21-0.36)
0.5 (0.23-0.97)
0.29 (0.20-0.47)
p=0.93, p=0.46
p=0.049, p=0.2
Immature granulocytes
0.81 (0.65-1.26)
0.58 (0.15-1.06)
0.73 (0.42-2.53)
0.30 (0.12-1.04)
p=0.90, p=0.97
p=0.09, p=0.036
Myeloid progenitors
0.28 (0.11-0.55)
0.22 (0.08-0.91)
0.23 (0.11-0.62)
0.14 (0.08-0.32)
p=0.84, p=0.17
p=0.83, p=0.28
CD16+ monocytes
0.07 (0.03-0.16)
0.19 (0.1-0.28)
0.04 (0.02-0.1)
0.15 (0.05-0.31)
p=0.49, p=0.95
p=0.0063, p=0.13
CD16- monocytes
1.24 (0.62-4.80)
3.23(1.4-4.4)
2.03 (0.57-3.42)
2.2 (0.8-3.4)
p=0.78, p=0.45
p=0.43, p=0.83
B lymphocytes
0.41 (0.17-0.70)
2.13 (1.67-2.75)
0.17 (0.06-0.21)
2.63 (2.09-3.43)
p=0.029, p=0.09
p<0.0001, p<0.0001
Non-cytotoxic T cells
6.95 (2.09-9.43)
10.9 (8.94-17.50)
3.81 (1.4-7.56)
13.10 (9.40-19.75)
p=0.45, p=0.61
p<0.0001, p<0.0001
NK/Cytotoxic T cells
0.20 (0.11-0.62)
0.73 (0.37-1.17)
0.17 (0.05-0.6)
0.91 (0.41-1.77)
p=0.63, p=0.17
p=0.006, p<0.0001
Frequency of leukocyte subpopulations expressed as median % (interquartile range). Total leukocytes from live singlets are reported and then used as the parent for leukocyte subpopulation frequencies. Non-parametric Mann-Whitney U tests were used to compare leukocyte proportions measured per tissue between cohorts (first p value = colostrum, second p value = blood). Intra-individual comparisons were performed using Wilcoxon matched-pairs signed rank tests, comparing leukocyte proportions between blood and colostrum within each cohort (first p value = lean, second p value = obese. p values < 0.05 were considered significant
Colostrum vs. Blood (p value) within each cohort, analysis btw tissues (Lean, obese)
Obese vs. Lean (p value) (colostrum, blood)

Obesity is associated with a decreased B lymphocyte fraction in colostrum

The flow cytometry plots from colostrum samples highlighted consistent differences compared to blood, such as increased debris and doublets proportion, and overall decreased viability (Fig. 3). The B lymphocyte fraction was significantly reduced in the obese cohort compared to the lean cohort (Fig. 2 panel I and Table 3, median 0.17% vs. 0.41% in the lean cohort, p = 0.029). The remaining 9 leukocyte subpopulations exhibited similar proportions in colostrum between cohorts. Median % of all leukocyte subtypes for both cohorts are found in Table 3.

Leukocyte proportions are regulated between blood and colostrum

Neutrophils were the most abundant leukocytes in both tissue types, as expected [31, 35]. There was no difference in neutrophil proportions between groups in either tissue (Fig. 2, Table 3). However, there were significantly less neutrophils in lean mothers’ colostrum compared to lean mothers’ blood, while this difference was not recapitulated in the obese cohort (p=0.007 vs. p=0.51, respectively, Table 3).
The second highest frequency colostrum leukocytes were non-cytotoxic T cells (medians: 6.95% and 3.81% in lean and obese groups, respectively, Table 3). The frequency of non-cytotoxic T cells in peripheral blood was significantly higher compared to the frequency in colostrum, irrespective of the cohort (Fig. 2, Table 3).
For B lymphocytes, non-cytotoxic T cells, and eosinophils, relative proportions depended on the tissue of origin. Overall, there was a significantly higher fraction of B lymphocytes and non-cytotoxic T cells in peripheral blood compared to colostrum (Fig. 2 I, J and C, D, respectively). On the other hand, there was a significantly higher fraction of eosinophils in colostrum compared to peripheral blood (Fig. 2 S, T). These trends were pervasive across study groups (Table 3). Group-specific differences between tissue were also identified. There were significantly larger fractions of basophils and CD16+ monocytes in blood, only in the lean group, and a significantly larger fraction of immature granulocytes in colostrum from the obese group only (Table 3).

The relative sizes of leukocytes are selectively regulated between blood and colostrum

The relative size of various leukocyte populations varied significantly between tissues as estimated by FSC, and this was pervasive across both cohorts. B lymphocytes were significantly larger in colostrum compared to peripheral blood (Fig. 4A). On the other hand, both populations of T lymphocytes, basophils, and both populations of monocytes were significantly smaller in colostrum compared to blood (Fig. 4A). Of note, in blood, CD16+ monocytes were significantly smaller (Fig. 4A, p = 0.031) and significantly less internally complex (Fig. 4C, p < 0.0001) than classical CD16 monocytes. These results together recapitulate well-described contrasts between these populations, further supporting the identity of these cells. In colostrum, the differences in size and internal complexity between both monocyte subpopulations were exacerbated (p < 0.0001 for both). Eosinophils and neutrophils did not exhibit a change in relative size between tissues.

Leukocytes from the myeloid lineage undergo regulation of internal complexity between blood and colostrum

There was a leukocyte-specific regulation of internal complexity between tissue, as determined by SSC of light, and this finding was pervasive across both cohorts. Lymphoid cells showed stable SSC in blood and colostrum (Fig. 4B), while the SSC of myeloid cells were significantly regulated between tissues (Fig. 4C). Basophils and classical CD16 monocytes exhibited significantly higher SSC in colostrum, while neutrophils and CD16+ monocytes exhibited significantly higher SSC in peripheral blood. As seen for FSC properties, eosinophils did not exhibit a change in SSC properties between tissue types.

Leukocytes regulate CD45 expression between blood and colostrum in a lineage-dependent fashion

Overall, the relative expression of CD45 was higher on lymphocytes, with a mean MFI around 1000 (Fig. 5A) and lower on myeloid progenitors with a mean MFI <400 (Fig. 5C). There was no difference between tissues in the relative expression of CD45 on the surface of cells from the lymphoid lineage (Fig. 5A). All 3 granulocyte subtypes exhibited a significant increase in CD45 expression in colostrum compared to blood (Fig. 5B). Upregulation of CD45 was systematically more significant on granulocytes from the lean cohort. While early myeloid precursors did not exhibit changes in CD45 expression, with MFI consistently averaging around 150 in all groups, colostrum immature granulocytes exhibited twice the levels of CD45 expression observed in peripheral blood, with MFI averaging from 134 and 128 in blood to >300 in colostrum, irrespective of the study groups (Fig. 5C). Both monocyte populations downregulated CD45 expression in colostrum, irrespective of the study group, and the downregulation was systematically more significant in the obese cohort (Fig. 5D).

Leukocyte-specific regulation of CD16 between peripheral blood and colostrum

We observed stable, relatively low levels of CD16 on cytotoxic T/NK cells across tissues in both study groups (Fig. 6A). Blood neutrophils exhibited the highest expression of CD16 (mean MFI 5049 and 5584 for lean and obese study groups respectively, Fig. 6B) while the expression on blood-circulating monocytes and cytotoxic T/NK cells was overall 10-fold lower. There was a significant downregulation of CD16 on colostrum neutrophils compared to blood, irrespective of the study group, and the difference between tissues was more significant in the lean cohort (Fig. 6B). On the other hand, there was a significant upregulation of CD16 on the surface of colostrum CD16+ monocytes, in the lean group only (Fig. 6C). Interestingly, blood-circulating CD16+ monocytes expressed significantly more CD16 in the obese cohort than in the lean cohort (p = 0.0011, Fig. 6C).

Discussion

Here, we applied a 7-color panel for flow cytometry to investigate 10 major leukocyte subpopulations in peripheral blood and colostrum from mothers presenting lean or obese BMI [31, 34]. In answering the primary objective of the study, we evidenced a reshaping of the colostrum B lymphocyte compartment in obesity, with less B cells present in the colostrum from mothers suffering from obesity, while all other leukocyte populations remained unaltered in the colostrum between groups. In answering the secondary objective of this study, we identified considerable cell-specific phenotypic alterations of all leukocyte subtypes investigated between blood and colostrum. The alterations evidenced included regulation of cell size, internal complexity, and surface expression CD45 and CD16. Altogether, this report informs for the first time on regulated processes in colostrum leukocytes possibly involved in activation and trafficking from human blood to colostrum and evidences regulations correlated to maternal obesity.
Neutrophil average proportions in colostrum were 1.5 to 5 times higher than previously reported using flow cytometry (medians >65% in both groups, versus less than 15% in [31]), but similar to previously measured in colostrum using a blood hematology analyzer [31, 36]. Blood-circulating neutrophils have a lifespan of a few hours only, which is significantly shorter compared to other leukocytes [37]. Reducing the time between collection and analysis to < 3 h may have allowed increased detection of live neutrophils, compared to longer wait periods in earlier studies. Proportions measured in blood were higher than expected in this tissue, which is consistent with the literature reporting leukocytosis and impaired neutrophil apoptosis during pregnancy and labor [38].
We show that the abundance of CD16 on the surface of neutrophils and of CD16+ monocytes is significantly regulated by tissue type, and depending on the cohort. In lean cohort blood, neutrophils express significantly more CD16 while CD16+ monocytes express significantly less CD16, than in colostrum. CD16 is a Fc gamma III receptor (FcgIIIR) for the constant fraction of IgG antibodies. CD16 is abundant on the surface of phagocytic cells and its presence correlates with the phagocytic capacity of opsonized pathogens [39]. It is interesting to measure such a regulation for FcR of IgG in colostrum, as the main immunoglobulin isotypes present in colostrum are IgA and IgM, which are not recognized by CD16 [40].
Downregulation of CD16 on colostrum neutrophils could be the result of ectodomain shedding caused by activation or apoptosis. While apoptosis is also generally marked by a decrease in cell size, here no variation was observed in neutrophil relative size between tissue, casting doubt on apoptosis being the cause of CD16 downregulation on neutrophil surfaces in colostrum. Neutrophil activation is a rational alternative in the light of the well-described colostrum microbiota [14, 41, 42]. Finally, CD16 downregulation from colostrum neutrophils may be caused by internalization after cross-linking IgG Fc, in contrast to shedding proposed earlier. Overall, additional experiments are necessary to conclude on the cause of neutrophil CD16 downregulation in colostrum.
Contrasting from findings in neutrophils, in mothers from the lean cohort, the relative abundance of CD16 on CD16-expressing monocytes was higher in colostrum compared to blood. Of note, the present flow cytometry panel was not designed to further subclassify CD16+ monocytes between non-classical and intermediate populations, the latter known to express relatively less CD16 than the former.
Therefore, the observed difference could have various origins. There could be an expansion of the higher CD16-expressing non-classical monocytes population, as observed in peripheral blood during infections [43, 44]. A possible alternative could be the upregulation of CD16 from the intermediate population, as previously described [45]. Interestingly, this difference between tissues was not recapitulated in the obese cohort, because CD16 was significantly increased on blood monocytes compared to the lean cohort, to levels that were similar to that of CD16 in colostrum monocytes. This is consistent with obesity involving systemic low-grade inflammation and highlights the relevance of investigating CD16 expression levels on monocytes in addition to other monocyte characteristics known to be modulated by obesity [46]. In the present study, the blood proportion of CD16+ monocytes was not perturbated by obesity. It is a possibility that the distinctive post-partum immune profile is causing this discrepancy compared to the obesity-mediated modulations of blood monocytes described in the literature [47]. Overall, it will be necessary to investigate further monocyte subpopulations in colostrum.
CD45 upregulation has been described on granulocytes upon exposure to pathogenic microbes and physiological activators such as fMLP [4850]. However, the implications of this regulation on the development of the immune response remain unclear, and conflicting results have been described. For example in neutrophils, upregulation of CD45 is consistent with their activation [50]. CD45 is also partially involved in regulating various neutrophil immune functions like cell adhesion, phagocytosis, and ROS production [51]. However, CD45 was also shown to downregulate neutrophil chemotaxis, and in turn, neutrophil ROS production was shown to inhibit CD45 [52, 53]. Therefore, the present results warrant future in-depth analyses of the activation status of granulocytes present in colostrum using functional assays.
Breastmilk is the recommended source of nutrition for infants globally. At present, only exceptional conditions warrant a healthcare professional to consider discouraging this practice, including specific substance abuse but also treatments affecting the immune system of the mother [5456]. The presented results indicate that suffering from obesity significantly reduces the B lymphocyte compartment in the colostrum, without affecting peripheral blood. Much remains to be investigated about colostrum B lymphocytes in obesity. In peripheral blood, B lymphocytes from obese individuals are more inflammatory and less efficient at switching to memory B cells upon antigen exposure [8]. Here, the features of colostrum B lymphocytes hint toward a phenotype of antibody-secreting cells, with increased cell size, although this remains to be confirmed. Infants born with an immature immune system benefit from the passive transfer of antibodies from their mothers through breastfeeding. This includes immunologically relevant concentrations of immunoglobulins in breastmilk over a long period of time and vaccine-induced antigen-specific IgA and IgG into breastmilk 2-6 weeks post-vaccination [57, 58]. Unvaccinated infants therefore benefit from antibody-mediated protection against infectious diseases, in addition to training of their immature immune system by exposure to these components [59]. Interestingly, a previous study described increased sIgA in obese colostrum [12]. Although more studies are necessary to confirm these findings globally, it is possible that breast-tissue resident plasma cells secrete more sIgA in obesity to compensate for less B cells present in colostrum. The present results therefore suggest obesity may impact the quantity and quality of passive immunity provided to nursing infants.
Additionally, this work provides insights into the regulation of leukocyte trafficking between blood and colostrum since various significant trends were equally recapitulated in both cohorts. Overall, the data indicate minimal regulation of the lymphoid compartment between tissues while myeloid cells were significantly altered morphologically and on the cell surface in colostrum. Mechanisms of leukocyte recruitment to the alveolar lumen during lactation remain largely unknown. Leukocytes are thought to reach breastmilk through the paracellular pathway from a mammary gland origin, crossing tight junctions (TJ), and not by direct extravasation from blood vessels. As TJ are tightly sealed during lactation, it has been suggested that leukocytes are recruited before initiation of lactation [60, 61]. However, a recent study showed increasing numbers of post-mitotic plasma cells in the mouse mammary gland during lactation, suggesting some recruitment may actually take place during lactation [62]. Mouse breastmilk T lymphocytes express TJ proteins, possibly to maintain TJ integrity during leukocyte transmigration during lactation [63]. On the other hand, extravasation is the reported process by which the mammary gland undergoes the initial leukocyte recruitment during pregnancy [64]. In the context of infections, transmigration cause leukocytes to modulate membrane expression of various markers and overall exhibit a proinflammatory profile. This includes enhanced survival for granulocytes and lymphocytes, and increased phagocytosis for neutrophils and monocytes, among other features described in [65]. Transcriptional analysis of the mammary gland throughout gestation, lactation, and weaning showed an upregulation of immune-related function during the involution of the tissue post-weaning, compared to earlier timepoints including lactation [66]. Overall, this suggests a largely unknown complex process physiologically distinct from infection-induced leukocyte transmigration and calls for further investigations into breastmilk leukocyte recruitment.
Early literature has speculated active immunity transfer from breastmilk to neonates [67]. More recently, breastmilk was shown to be significantly enriched in regulatory T cells compared to peripheral blood [68]. This scattered literature implicates a regulation of leukocytes in breastmilk with potential outcomes in the suckling neonate. Here, providing a differential description of leukocyte phenotypes in both tissue types helps to start dissecting this complex and selective recruitment process. We describe that the mothers’ BMI impacts B lymphocyte proportions in colostrum, suggesting a mother’s health status may in turn affect neonatal health.
A possible limitation of this work was relying on BMI to organize cohorts. Various reports demonstrate that BMI alone may not be a sufficient indicator for obesity and % body fat should be used instead [69, 70]. In addition, recruitment and allocation to cohorts were performed during the first trimester of pregnancy, without later revisions of weight gain. We argue that overall first-trimester weight gain has been previously reported as minimal and that mothers suffering from obesity have a lower weight increase compared to lean mothers during this stage of pregnancy [71, 72]. Therefore, the present results may be minimally confounded by differential weight gain during the development of the pregnancy.
Technically, while reporting leukocyte proportions in colostrum provide novel insights, it would be ideal to also measure absolute numbers of cells in colostrum. While earlier work has described absolute counts using BD TruCount tubes, the necessary pre-processing of colostrum samples may challenge the validity of the obtained results. Unfortunately, there is presently no alternative to estimate leukocyte absolute counts in breastmilk, while the physical properties of this tissue hamper their unprocessed use with TruCount tubes. Furthermore, we could not identify all of the leukocytes present in samples, as shown by events outside of population-calling gates, which is nonetheless consistent with the literature [31]. While CD45+ leukocytes make up the large majority of nucleated blood-circulating cells, rare CD45 cells such as erythroid precursors or CD45 megakaryocytes were recently reported in healthy individuals which could participate in explaining the < 3.5% CD45 fraction identified in these samples [73, 74].
This report highlights multiple key questions regarding active immunity in human colostrum, that require further study. First, what are the causes of the reduced B cell compartment in obese mothers’ colostrum, and what are the short- and long-term consequences in suckling infants? Why and how are leukocytes trafficked to colostrum, and is the altered phenotype in colostrum a requisite for, or a consequence of trafficking? Finally, the presented data hint toward activation of the innate immune system in colostrum, accentuating the need to investigate colostrum as a complex system, together with its microbiota. Host-microbe crosstalk should be considered in future studies to shed light on the mechanistic regulation of colostrum composition in obesity, and its impact on suckling infants.

Conclusions

To the best of our knowledge, this is the first study of the main leukocyte subtypes in colostrum from a Latin-American population, the first report of phenotypic alterations of leukocyte subpopulations between peripheral blood and colostrum globally, and the first evidence of obesity altering colostrum leukocytes [25]. Therefore, this pioneering study is a stepping stone to further investigate active immunity in human breastmilk. Additional research is necessary to understand the etiology and consequences of the reported alterations in mothers suffering from obesity.

Acknowledgements

We thank and acknowledge the mothers who accepted to participate in this study.

Declarations

This study was approved by the Ethics Committee of the Hospital Regional Materno Infantil, Servicios de Salud de Nuevo León, Mexico, and the IRB at Escuela de Medicina y Ciencias de la Salud, TecSalud, in Monterrey, Mexico, with the ID CarMicrobioLHum-2018. All samples were collected and used following signed informed consent and anonymization.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Christian P, Smith ER, Lee SE, Vargas AJ. Bre 589 mer AA, Raiten DJ. The need to study human milk as a biological system. Am J Clin Nutr. 2021;113:1063–72.PubMedPubMedCentralCrossRef Christian P, Smith ER, Lee SE, Vargas AJ. Bre 589 mer AA, Raiten DJ. The need to study human milk as a biological system. Am J Clin Nutr. 2021;113:1063–72.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Ziomkiewicz A, Babiszewska M, Apanasewicz A, Piosek M, Wychowaniec P, Cierniak A, et al. Psychosocial stress and cortisol stress reactivity predict breast milk composition. Sci Rep. 2021;11:11576.PubMedPubMedCentralCrossRef Ziomkiewicz A, Babiszewska M, Apanasewicz A, Piosek M, Wychowaniec P, Cierniak A, et al. Psychosocial stress and cortisol stress reactivity predict breast milk composition. Sci Rep. 2021;11:11576.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M. Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr. 2016;104:646–62.PubMedCrossRef Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M. Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr. 2016;104:646–62.PubMedCrossRef
4.
Zurück zum Zitat Olivares M, Albrecht S, De Palma G, Ferrer MD, Castillejo G, Schols HA, et al. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur J Nutr. 2015;54:119–28.PubMedCrossRef Olivares M, Albrecht S, De Palma G, Ferrer MD, Castillejo G, Schols HA, et al. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur J Nutr. 2015;54:119–28.PubMedCrossRef
5.
Zurück zum Zitat Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–63.PubMedCrossRef Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–63.PubMedCrossRef
6.
Zurück zum Zitat Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev. 2012;249:218–38.PubMedPubMedCentralCrossRef Johnson AR, Milner JJ, Makowski L. The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev. 2012;249:218–38.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Purdy JC, Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol. 2021;106:306–19.PubMedCrossRef Purdy JC, Shatzel JJ. The hematologic consequences of obesity. Eur J Haematol. 2021;106:306–19.PubMedCrossRef
8.
Zurück zum Zitat Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obesity (Silver Spring). 2016;24:615–25.CrossRef Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obesity (Silver Spring). 2016;24:615–25.CrossRef
9.
Zurück zum Zitat Mangel L, Mimouni FB, Mandel D, Mordechaev N, Marom R. Breastfeeding difficulties, breastfeeding duration, maternal body mass index, and breast anatomy: are they related? Breastfeed Med. 2019;14:342–6.PubMedCrossRef Mangel L, Mimouni FB, Mandel D, Mordechaev N, Marom R. Breastfeeding difficulties, breastfeeding duration, maternal body mass index, and breast anatomy: are they related? Breastfeed Med. 2019;14:342–6.PubMedCrossRef
10.
Zurück zum Zitat Rasmussen KM, Kjolhede CL. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics. 2004;113:e465–71.PubMedCrossRef Rasmussen KM, Kjolhede CL. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics. 2004;113:e465–71.PubMedCrossRef
11.
Zurück zum Zitat Amir LH, Donath S. A systematic review of maternal obesity and breastfeeding intention, initiation and duration. BMC Pregnancy Childbirth. 2007;7:9.PubMedPubMedCentralCrossRef Amir LH, Donath S. A systematic review of maternal obesity and breastfeeding intention, initiation and duration. BMC Pregnancy Childbirth. 2007;7:9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Fujimori M, Franca EL, Fiorin V, Morais TC, Honorio-Franca AC, de Abreu LC. Changes in the biochemical and immunological components of serum and colostrum of overweight and obese mothers. BMC Pregnancy Childbirth. 2015;15:166.PubMedPubMedCentralCrossRef Fujimori M, Franca EL, Fiorin V, Morais TC, Honorio-Franca AC, de Abreu LC. Changes in the biochemical and immunological components of serum and colostrum of overweight and obese mothers. BMC Pregnancy Childbirth. 2015;15:166.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Dave V, Street K, Francis S, Bradman A, Riley L, Eskenazi B, et al. Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatr Res. 2016;79:846–54.PubMedPubMedCentralCrossRef Dave V, Street K, Francis S, Bradman A, Riley L, Eskenazi B, et al. Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatr Res. 2016;79:846–54.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gamez-Valdez JS, Garcia-Mazcorro JF, Rincon AHM, Reyes DLR, Blanco GJ, Rodriguez MTA, et al. Compositional analysis of the bacterial community in colostrum samples from women with gestational diabetes mellitus and obesity. Sci Rep. 2021;11:24373. Gamez-Valdez JS, Garcia-Mazcorro JF, Rincon AHM, Reyes DLR, Blanco GJ, Rodriguez MTA, et al. Compositional analysis of the bacterial community in colostrum samples from women with gestational diabetes mellitus and obesity. Sci Rep. 2021;11:24373.
15.
Zurück zum Zitat Collado MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72:77–85.PubMedCrossRef Collado MC, Laitinen K, Salminen S, Isolauri E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res. 2012;72:77–85.PubMedCrossRef
16.
Zurück zum Zitat Fujimori M, Franca EL, Morais TC, Fiorin V, de Abreu LC, Honorio-Franca AC. Cytokine and adipokine are biofactors can act in blood and colostrum of obese mothers. BioFactors. 2017;43:243–50.PubMedCrossRef Fujimori M, Franca EL, Morais TC, Fiorin V, de Abreu LC, Honorio-Franca AC. Cytokine and adipokine are biofactors can act in blood and colostrum of obese mothers. BioFactors. 2017;43:243–50.PubMedCrossRef
17.
Zurück zum Zitat Enstad S, Cheema S, Thomas R, Fichorova RN, Martin CR, O’Tierney-Ginn P, et al. The impact of maternal obesity and breast milk inflammation on developmental programming of infant growth. Eur J Clin Nutr. 2021;75:180–8.PubMedCrossRef Enstad S, Cheema S, Thomas R, Fichorova RN, Martin CR, O’Tierney-Ginn P, et al. The impact of maternal obesity and breast milk inflammation on developmental programming of infant growth. Eur J Clin Nutr. 2021;75:180–8.PubMedCrossRef
18.
Zurück zum Zitat Horta BL, Loret de Mola C, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr. 2015;104:30–7.PubMedCrossRef Horta BL, Loret de Mola C, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis. Acta Paediatr. 2015;104:30–7.PubMedCrossRef
19.
Zurück zum Zitat Bartok CJ, Ventura AK. Mechanisms underlying the association between breastfeeding and obesity. Int J Pediatr Obes. 2009;4:196–204.PubMedCrossRef Bartok CJ, Ventura AK. Mechanisms underlying the association between breastfeeding and obesity. Int J Pediatr Obes. 2009;4:196–204.PubMedCrossRef
20.
Zurück zum Zitat Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–79.PubMedCrossRef Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–79.PubMedCrossRef
21.
Zurück zum Zitat Gutvirtz G, Wainstock T, Landau D, Sheiner E. Maternal obesity and offspring long-term infectious morbidity. J Clin Med. 2019;8:1466.PubMedCentralCrossRef Gutvirtz G, Wainstock T, Landau D, Sheiner E. Maternal obesity and offspring long-term infectious morbidity. J Clin Med. 2019;8:1466.PubMedCentralCrossRef
22.
Zurück zum Zitat Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5:53–64.PubMedCrossRef Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5:53–64.PubMedCrossRef
23.
Zurück zum Zitat Wetzig H, Schulz R, Diez U, Herbarth O, Viehweg B, Borte M. Associations between duration of breast-feeding, sensitization to hens’ eggs and eczema infantum in one and two year old children at high risk of atopy. Int J Hyg Environ Health. 2000;203:17–21.PubMedCrossRef Wetzig H, Schulz R, Diez U, Herbarth O, Viehweg B, Borte M. Associations between duration of breast-feeding, sensitization to hens’ eggs and eczema infantum in one and two year old children at high risk of atopy. Int J Hyg Environ Health. 2000;203:17–21.PubMedCrossRef
24.
Zurück zum Zitat Vieira Borba V, Shoenfeld Y. Prolactin, autoimmunity, and motherhood: when should women avoid breastfeeding? Clin Rheumatol. 2019;38:1263–70.PubMedCrossRef Vieira Borba V, Shoenfeld Y. Prolactin, autoimmunity, and motherhood: when should women avoid breastfeeding? Clin Rheumatol. 2019;38:1263–70.PubMedCrossRef
25.
Zurück zum Zitat Erliana UD, Fly AD. The function and alteration of immunological properties in human milk of obese mothers. Nutrients. 2019;11:1284.PubMedCentralCrossRef Erliana UD, Fly AD. The function and alteration of immunological properties in human milk of obese mothers. Nutrients. 2019;11:1284.PubMedCentralCrossRef
26.
Zurück zum Zitat Organization WH. Obesity: preventing and managing the global epidemic: World Health Organization; 2000. Organization WH. Obesity: preventing and managing the global epidemic: World Health Organization; 2000.
28.
Zurück zum Zitat Lazar K, Kussmann T, Pawelec G, Poschel S, Goelz R, Hamprecht K, et al. Immunomonitoring of human breast milk cells during HCMV-reactivation. Front Immunol. 2021;12:3440.CrossRef Lazar K, Kussmann T, Pawelec G, Poschel S, Goelz R, Hamprecht K, et al. Immunomonitoring of human breast milk cells during HCMV-reactivation. Front Immunol. 2021;12:3440.CrossRef
29.
Zurück zum Zitat Kostlin N, Schoetensack C, Schwarz J, Spring B, Marme A, Goelz R, et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) in breast milk (BM); GR663 MDSC accumulate in human BM and modulate T-Cell and monocyte function. Front Immunol. 2018;9:1098. Kostlin N, Schoetensack C, Schwarz J, Spring B, Marme A, Goelz R, et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) in breast milk (BM); GR663 MDSC accumulate in human BM and modulate T-Cell and monocyte function. Front Immunol. 2018;9:1098.
30.
Zurück zum Zitat Dixon D-L, Forsyth KD. Leukocytes in expressed breast milk of asthmatic mothers. Allergol Immunopathol (Madr). 2017;45:325–32.CrossRef Dixon D-L, Forsyth KD. Leukocytes in expressed breast milk of asthmatic mothers. Allergol Immunopathol (Madr). 2017;45:325–32.CrossRef
31.
Zurück zum Zitat Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al. Leukocyte populations in human preterm and term breast milk identified by multicolour flow cytometry. PLoS One. 2015;10:e0135580.PubMedPubMedCentralCrossRef Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al. Leukocyte populations in human preterm and term breast milk identified by multicolour flow cytometry. PLoS One. 2015;10:e0135580.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4:648–55.PubMedCrossRef Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4:648–55.PubMedCrossRef
33.
Zurück zum Zitat Cossarizza A, Chang H-D, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49:1457–973.PubMedPubMedCentralCrossRef Cossarizza A, Chang H-D, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol. 2019;49:1457–973.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29:171–82.PubMedCrossRef Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29:171–82.PubMedCrossRef
36.
Zurück zum Zitat Peroni DG, Chirumbolo S, Veneri D, Piacentini GL, Tenero L, Vella A, et al. Colostrum-derived B and T cells as an extra-lymphoid compartment of effector cell populations in humans. J Matern Fetal Neonatal Med. 2013;26:137–42.PubMedCrossRef Peroni DG, Chirumbolo S, Veneri D, Piacentini GL, Tenero L, Vella A, et al. Colostrum-derived B and T cells as an extra-lymphoid compartment of effector cell populations in humans. J Matern Fetal Neonatal Med. 2013;26:137–42.PubMedCrossRef
37.
Zurück zum Zitat Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.PubMedPubMedCentralCrossRef Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31:318–24.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Chandra S, Tripathi AK, Mishra S, Amzarul M, Vaish AK. Physiological changes in hematological parameters during pregnancy. Indian J Hematol Blood Transfus. 2012;28:144–6.PubMedPubMedCentralCrossRef Chandra S, Tripathi AK, Mishra S, Amzarul M, Vaish AK. Physiological changes in hematological parameters during pregnancy. Indian J Hematol Blood Transfus. 2012;28:144–6.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70:881–6.PubMedCrossRef Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70:881–6.PubMedCrossRef
41.
Zurück zum Zitat Middelhoven PJ, van Buul JD, Kleijer M, Roos D, Hordijk PL. Actin polymerization induces shedding of FcγRIIIb (CD16) from human neutrophils. Biochem Biophys Res Commun. 1999;255:568–74.PubMedCrossRef Middelhoven PJ, van Buul JD, Kleijer M, Roos D, Hordijk PL. Actin polymerization induces shedding of FcγRIIIb (CD16) from human neutrophils. Biochem Biophys Res Commun. 1999;255:568–74.PubMedCrossRef
42.
Zurück zum Zitat Tosi MF, Zakem H. Surface expression of Fc gamma receptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments. J Clin Invest. 1992;90:462–70.PubMedPubMedCentralCrossRef Tosi MF, Zakem H. Surface expression of Fc gamma receptor III (CD16) on chemoattractant-stimulated neutrophils is determined by both surface shedding and translocation from intracellular storage compartments. J Clin Invest. 1992;90:462–70.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82:244–52.PubMedCrossRef Strauss-Ayali D, Conrad SM, Mosser DM. Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol. 2007;82:244–52.PubMedCrossRef
44.
Zurück zum Zitat Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, et al. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe. 2014;16:115–27.PubMedPubMedCentralCrossRef Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, et al. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe. 2014;16:115–27.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ong S-M, Teng K, Newell E, Chen H, Chen J, Loy T, et al. A novel, five-marker alternative to CD16–CD14 gating to identify the three human monocyte subsets. Front Immunol. 2019;10:1761. Ong S-M, Teng K, Newell E, Chen H, Chen J, Loy T, et al. A novel, five-marker alternative to CD16–CD14 gating to identify the three human monocyte subsets. Front Immunol. 2019;10:1761.
46.
Zurück zum Zitat Friedrich K, Sommer M, Strobel S, Thrum S, Bluher M, Wagner U, et al. Perturbation of the monocyte compartment in human obesity. Front Immunol. 2019;10:1874.PubMedPubMedCentralCrossRef Friedrich K, Sommer M, Strobel S, Thrum S, Bluher M, Wagner U, et al. Perturbation of the monocyte compartment in human obesity. Front Immunol. 2019;10:1874.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Brann E, Edvinsson A, Rostedt Punga A, Sundstrom-Poromaa I, Skalkidou A. Inflammatory and anti-inflammatory markers in plasma: from late pregnancy to early postpartum. Sci Rep. 2019;9:1863.PubMedPubMedCentralCrossRef Brann E, Edvinsson A, Rostedt Punga A, Sundstrom-Poromaa I, Skalkidou A. Inflammatory and anti-inflammatory markers in plasma: from late pregnancy to early postpartum. Sci Rep. 2019;9:1863.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Wedi B, Wieczorek D, Stunkel T, Breuer K, Kapp A. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J Allergy Clin Immunol. 2002;109:477–84.PubMedCrossRef Wedi B, Wieczorek D, Stunkel T, Breuer K, Kapp A. Staphylococcal exotoxins exert proinflammatory effects through inhibition of eosinophil apoptosis, increased surface antigen expression (CD11b, CD45, CD54, and CD69), and enhanced cytokine-activated oxidative burst, thereby triggering allergic inflammatory reactions. J Allergy Clin Immunol. 2002;109:477–84.PubMedCrossRef
49.
Zurück zum Zitat Chirumbolo S, Vella A, Ortolani R, De Gironcoli M, Solero P, Tridente G, et al. Differential response of human basophil activation markers: a multi-parameter flow cytometry approach. Clinl Mol Allergy. 2008;6:12.CrossRef Chirumbolo S, Vella A, Ortolani R, De Gironcoli M, Solero P, Tridente G, et al. Differential response of human basophil activation markers: a multi-parameter flow cytometry approach. Clinl Mol Allergy. 2008;6:12.CrossRef
51.
Zurück zum Zitat Zhu JW, Doan K, Park J, Chau AH, Zhang H, Lowell CA, et al. Distinct functions of receptor-like tyrosine phosphatases CD45 and CD148 in chemoattractant-mediated neutrophil migration and response to S. aureus infection. Immunity. 2011;35:757–69.PubMedPubMedCentralCrossRef Zhu JW, Doan K, Park J, Chau AH, Zhang H, Lowell CA, et al. Distinct functions of receptor-like tyrosine phosphatases CD45 and CD148 in chemoattractant-mediated neutrophil migration and response to S. aureus infection. Immunity. 2011;35:757–69.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Saunders AE, Johnson P. Modulation of immune 730 cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22:339–48.PubMedCrossRef Saunders AE, Johnson P. Modulation of immune 730 cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22:339–48.PubMedCrossRef
53.
Zurück zum Zitat Fialkow L, Chan CK, Downey GP. Inhibition of CD45 during neutrophil activation. J Immunol. 1997;158:5409–17.PubMed Fialkow L, Chan CK, Downey GP. Inhibition of CD45 during neutrophil activation. J Immunol. 1997;158:5409–17.PubMed
54.
55.
Zurück zum Zitat Sau A, Clarke S, Bass J, Kaiser A, Marinaki A, Nelson-Piercy C. Azathioprine and breastfeeding—is it safe? BJOG. 2007;114:498–501.PubMedCrossRef Sau A, Clarke S, Bass J, Kaiser A, Marinaki A, Nelson-Piercy C. Azathioprine and breastfeeding—is it safe? BJOG. 2007;114:498–501.PubMedCrossRef
56.
Zurück zum Zitat Gisbert JP, Chaparro M. Safety of anti-TNF agents during pregnancy and breastfeeding in women with inflammatory bowel disease. Am Coll Gastroenterol. 2013;108:1426–38.CrossRef Gisbert JP, Chaparro M. Safety of anti-TNF agents during pregnancy and breastfeeding in women with inflammatory bowel disease. Am Coll Gastroenterol. 2013;108:1426–38.CrossRef
57.
Zurück zum Zitat Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, et al. SARS-CoV-2–specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women. JAMA. 2021;325:2013–4.PubMedPubMedCentralCrossRef Perl SH, Uzan-Yulzari A, Klainer H, Asiskovich L, Youngster M, Rinott E, et al. SARS-CoV-2–specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women. JAMA. 2021;325:2013–4.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Czosnykowska-Łukacka M, Lis-Kuberka J, Krolak-Olejnik B, Orczyk-Pawiłowicz M. Changes in human milk immunoglobulin profile during prolonged lactation. Front Pediatr. 2020;8:428.PubMedPubMedCentralCrossRef Czosnykowska-Łukacka M, Lis-Kuberka J, Krolak-Olejnik B, Orczyk-Pawiłowicz M. Changes in human milk immunoglobulin profile during prolonged lactation. Front Pediatr. 2020;8:428.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Conti MG, Terreri S, Piano Mortari E, Albano C, Natale F, Boscarino G, et al. Immune response of neonates born to mothers infected with SARS-CoV-2. JAMA Netw Open. 2021;4:e2132563.PubMedPubMedCentralCrossRef Conti MG, Terreri S, Piano Mortari E, Albano C, Natale F, Boscarino G, et al. Immune response of neonates born to mothers infected with SARS-CoV-2. JAMA Netw Open. 2021;4:e2132563.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55:629–41.PubMedCrossRef McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55:629–41.PubMedCrossRef
61.
Zurück zum Zitat Stelwagen K, Singh K. The role of tight junctions in mammary gland function. J Mammary Gland Biol Neoplasia. 2014;19:131–8.PubMedCrossRef Stelwagen K, Singh K. The role of tight junctions in mammary gland function. J Mammary Gland Biol Neoplasia. 2014;19:131–8.PubMedCrossRef
62.
Zurück zum Zitat Niimi K, Usami K, Fujita Y, Abe M, Furukawa M, Suyama Y, et al. Development of immune and microbial environments is independently regulated in the mammary gland. Mucosal Immunol. 2018;11:643–53.PubMedCrossRef Niimi K, Usami K, Fujita Y, Abe M, Furukawa M, Suyama Y, et al. Development of immune and microbial environments is independently regulated in the mammary gland. Mucosal Immunol. 2018;11:643–53.PubMedCrossRef
63.
Zurück zum Zitat Ikebuchi R, Fujimoto M, Moriya T, Kusumoto Y, Kobayashi K, Tomura M. T cells are the main population in mouse breast milk and express similar profiles of tight junction proteins as those in mammary alveolar epithelial cells. J Reprod Immunol. 2020;140:103137.PubMedCrossRef Ikebuchi R, Fujimoto M, Moriya T, Kusumoto Y, Kobayashi K, Tomura M. T cells are the main population in mouse breast milk and express similar profiles of tight junction proteins as those in mammary alveolar epithelial cells. J Reprod Immunol. 2020;140:103137.PubMedCrossRef
64.
Zurück zum Zitat Tanneau GM, Oyant LH-S, Chevaleyre CC, Salmon HP. Differential recruitment of T and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem. 1999;47:1581–92.PubMedCrossRef Tanneau GM, Oyant LH-S, Chevaleyre CC, Salmon HP. Differential recruitment of T and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem. 1999;47:1581–92.PubMedCrossRef
65.
Zurück zum Zitat Nourshargh S, Marelli-Berg FM. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol. 2005;26:157–65.PubMedCrossRef Nourshargh S, Marelli-Berg FM. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol. 2005;26:157–65.PubMedCrossRef
66.
Zurück zum Zitat Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2003;6:R92.PubMedPubMedCentralCrossRef Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2003;6:R92.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Hanson LA. Breastfeeding provides passive and likely long-lasting active immunity. Ann Allergy Asthma Immunol. 1998;81:523–33 quiz 533–4, 537.PubMedCrossRef Hanson LA. Breastfeeding provides passive and likely long-lasting active immunity. Ann Allergy Asthma Immunol. 1998;81:523–33 quiz 533–4, 537.PubMedCrossRef
68.
Zurück zum Zitat Cerbulo-Vazquez A, Hernandez-Pelaez G, Arriaga-Pizano LA, Bautista-Perez P, Romero-Venado J, Flores-Gonzalez JC, et al. Characterization of CD127− CD25++ Treg from human colostrum. Am J Reprod Immunol. 2018;79:e12806.CrossRef Cerbulo-Vazquez A, Hernandez-Pelaez G, Arriaga-Pizano LA, Bautista-Perez P, Romero-Venado J, Flores-Gonzalez JC, et al. Characterization of CD127− CD25++ Treg from human colostrum. Am J Reprod Immunol. 2018;79:e12806.CrossRef
70.
Zurück zum Zitat Wong JC, O’Neill S, Beck BR, Forwood MR, Khoo SK. Comparison of obesity and metabolic syndrome prevalence using fat mass index, body mass index and percentage body fat. PLoS One. 2021;16:e0245436.PubMedPubMedCentralCrossRef Wong JC, O’Neill S, Beck BR, Forwood MR, Khoo SK. Comparison of obesity and metabolic syndrome prevalence using fat mass index, body mass index and percentage body fat. PLoS One. 2021;16:e0245436.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Fattah C, Farah N, Barry SC, O’connor N, Stuart B, Turner MJ. Maternal weight and body composition in the first trimester of pregnancy. Acta Obstet Gynecol Scand. 2010;89:952–5.PubMedCrossRef Fattah C, Farah N, Barry SC, O’connor N, Stuart B, Turner MJ. Maternal weight and body composition in the first trimester of pregnancy. Acta Obstet Gynecol Scand. 2010;89:952–5.PubMedCrossRef
72.
Zurück zum Zitat Karachaliou M, Georgiou V, Roumeliotaki T, Chalkiadaki G, Daraki V, Koinaki S, et al. Association of trimester-specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am J Obstet Gynecol. 2015;212:502.e1–502.e14.CrossRef Karachaliou M, Georgiou V, Roumeliotaki T, Chalkiadaki G, Daraki V, Koinaki S, et al. Association of trimester-specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am J Obstet Gynecol. 2015;212:502.e1–502.e14.CrossRef
73.
Zurück zum Zitat Schreier S, Triampo W. The blood circulating rare cell population. What is it and what is it good for? Cells. 2020;9:790.PubMedCentralCrossRef Schreier S, Triampo W. The blood circulating rare cell population. What is it and what is it good for? Cells. 2020;9:790.PubMedCentralCrossRef
74.
Zurück zum Zitat Schreier S, Borwornpinyo S, Udomsangpetch R, Triampo W. An update of circulating rare cell types in healthy adult peripheral blood: findings of immature erythroid precursors. Ann Transl Med. 2018;6:406.PubMedPubMedCentralCrossRef Schreier S, Borwornpinyo S, Udomsangpetch R, Triampo W. An update of circulating rare cell types in healthy adult peripheral blood: findings of immature erythroid precursors. Ann Transl Med. 2018;6:406.PubMedPubMedCentralCrossRef
Metadaten
Titel
A cross-sectional study evidences regulations of leukocytes in the colostrum of mothers with obesity
verfasst von
Raúl Piñeiro-Salvador
Eduardo Vazquez-Garza
José Antonio Cruz-Cardenas
Cuauhtémoc Licona-Cassani
Gerardo García-Rivas
Jorge Moreno-Vásquez
Mario René Alcorta-García
Victor Javier Lara-Diaz
Marion E. G. Brunck
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2022
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02575-y

Weitere Artikel der Ausgabe 1/2022

BMC Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Neu im Fachgebiet Allgemeinmedizin

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.