Skip to main content
Erschienen in:

17.02.2022 | Original Paper

A Cyber-Security Risk Assessment Methodology for Medical Imaging Devices: the Radiologists’ Perspective

verfasst von: Tom Mahler, Erez Shalom, Arnon Makori, Yuval Elovici, Yuval Shahar

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Medical imaging devices (MIDs) are exposed to cyber-security threats. Currently, a comprehensive, efficient methodology dedicated to MID cyber-security risk assessment is lacking. We propose the Threat identification, ontology-based Likelihood, severity Decomposition, and Risk assessment (TLDR) methodology and demonstrate its feasibility and consistency with existing methodologies, while being more efficient, providing details regarding the severity components, and supporting organizational prioritization and customization. Using our methodology, the impact of 23 MIDs attacks (that were previously identified) was decomposed into six severity aspects. Four Radiology Medical Experts (RMEs) were asked to assess these six aspects for each attack. The TLDR methodology’s external consistency was demonstrated by calculating paired T-tests between TLDR severity assessments and those of existing methodologies (and between the respective overall risk assessments, using attack likelihood estimates by four healthcare cyber-security experts); the differences were insignificant, implying externally consistent risk assessment. The TLDR methodology’s internal consistency was evaluated by calculating the pairwise Spearman rank correlations between the severity assessments of different groups of two to four RMEs and each of their individual group members, showing that the correlations between the severity rankings, using the TLDR methodology, were significant (P < 0.05), demonstrating that the severity rankings were internally consistent for all groups of RMEs. Using existing methodologies, however, the internal correlations were insignificant for groups of less than four RMEs. Furthermore, compared to standard risk assessment techniques, the TLDR methodology is also sensitive to local radiologists’ preferences, supports a greater level of flexibility regarding risk prioritization, and produces more transparent risk assessments.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
11.
Zurück zum Zitat C. Harpes, A. A. Adelsbach, S. Zatti, and N. Peccia, “Quantitative Risk Assessment With ISAMM on ESA’s Operations Data System,” Proceedings of TTC, pp. 173–176, 2007. C. Harpes, A. A. Adelsbach, S. Zatti, and N. Peccia, “Quantitative Risk Assessment With ISAMM on ESA’s Operations Data System,” Proceedings of TTC, pp. 173–176, 2007.
14.
20.
Zurück zum Zitat D. Elster and J. H. Burdette, Questions and Answers in Magnetic Resonance Imaging, 2nd ed. Mosby, Aug. 2001, ISBN: 0323011845. D. Elster and J. H. Burdette, Questions and Answers in Magnetic Resonance Imaging, 2nd ed. Mosby, Aug. 2001, ISBN: 0323011845.
25.
Zurück zum Zitat T. Mahler, N. Nissim, E. Shalom, I. Goldenberg, G. Hassman, A. Makori, I. Kochav, Y. Elovici, and Y. Shahar, “Know Your Enemy: Characteristics of Cyber-Attacks on Medical Imaging Devices,” [cs.CR], Jan. 2018. Available: https://arxiv.org/abs/1801.05583. T. Mahler, N. Nissim, E. Shalom, I. Goldenberg, G. Hassman, A. Makori, I. Kochav, Y. Elovici, and Y. Shahar, “Know Your Enemy: Characteristics of Cyber-Attacks on Medical Imaging Devices,” [cs.CR], Jan. 2018. Available: https://​arxiv.​org/​abs/​1801.​05583.
30.
Zurück zum Zitat S. Becker, L. Jendele, O. Skopek, N. Berger, S. Ghafoor, M. Marcon, and E. Konukoglu, “Injecting and removing malignant features in mammography with CycleGAN: Investigation of an automated adversarial attack using neural networks,” arXiv, vol. 1811.07767, Nov. 2018. Available: https://arxiv.org/abs/1811.07767. S. Becker, L. Jendele, O. Skopek, N. Berger, S. Ghafoor, M. Marcon, and E. Konukoglu, “Injecting and removing malignant features in mammography with CycleGAN: Investigation of an automated adversarial attack using neural networks,” arXiv, vol. 1811.07767, Nov. 2018. Available: https://​arxiv.​org/​abs/​1811.​07767.
34.
Zurück zum Zitat T. Mahler, E. Shalom, Y. Elovici, Y. Shahar, “A Dual‐Layer Architecture for the Protection of Medical Devices from Anomalous Instructions,” In: M. Michalowski, R. Moskovitch (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science, vol 12299, 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-59137-3_25. T. Mahler, E. Shalom, Y. Elovici, Y. Shahar, “A Dual‐Layer Architecture for the Protection of Medical Devices from Anomalous Instructions,” In: M. Michalowski, R. Moskovitch (eds) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science, vol 12299, 2020. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-59137-3_​25.
35.
Metadaten
Titel
A Cyber-Security Risk Assessment Methodology for Medical Imaging Devices: the Radiologists’ Perspective
verfasst von
Tom Mahler
Erez Shalom
Arnon Makori
Yuval Elovici
Yuval Shahar
Publikationsdatum
17.02.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 3/2022
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-021-00562-y

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.