Skip to main content
main-content

28.05.2018 | Original Article | Ausgabe 8/2018

International Journal of Computer Assisted Radiology and Surgery 8/2018

A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 8/2018
Autoren:
Hooman Esfandiari, Robyn Newell, Carolyn Anglin, John Street, Antony J. Hodgson
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s11548-018-1776-9) contains supplementary material, which is available to authorized users.

Abstract

Purpose

Pedicle screw fixation is a challenging procedure with a concerning rates of reoperation. After insertion of the screws is completed, the most common intraoperative verification approach is to acquire anterior–posterior and lateral radiographic images, based on which the surgeons try to visually assess the correctness of insertion. Given the limited accuracy of the existing verification techniques, we identified the need for an accurate and automated pedicle screw assessment system that can verify the screw insertion intraoperatively. For doing so, this paper offers a framework for automatic segmentation and pose estimation of pedicle screws based on deep learning principles.

Methods

Segmentation of pedicle screw X-ray projections was performed by a convolutional neural network. The network could isolate the input X-rays into three classes: screw head, screw shaft and background. Once all the screw shafts were segmented, knowledge about the spatial configuration of the acquired biplanar X-rays was used to identify the correspondence between the projections. Pose estimation was then performed to estimate the 6 degree-of-freedom pose of each screw. The performance of the proposed pose estimation method was tested on a porcine specimen.

Results

The developed machine learning framework was capable of segmenting the screw shafts with 93% and 83% accuracy when tested on synthetic X-rays and on clinically realistic X-rays, respectively. The pose estimation accuracy of this method was shown to be \(1.93^{\circ } \pm 0.64^{\circ }\) and \(1.92 \pm 0.55\,\hbox {mm}\) on clinically realistic X-rays.

Conclusions

The proposed system offers an accurate and fully automatic pedicle screw segmentation and pose assessment framework. Such a system can help to provide an intraoperative pedicle screw insertion assessment protocol with minimal interference with the existing surgical routines.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Supplementary material 1 (gif 1103 KB)
11548_2018_1776_MOESM1_ESM.gif
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2018

International Journal of Computer Assisted Radiology and Surgery 8/2018 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

04.11.2018 | Klinik aktuell | Nachrichten | Onlineartikel

Radikale Klinik-Reformen als Blaupause?

03.11.2018 | Recht für Ärzte | Nachrichten | Onlineartikel

Das Kreuz mit dem Kreuz

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise