Skip to main content
Erschienen in: Journal of Digital Imaging 4/2011

01.08.2011

A Fast and Fully Automatic Method for Cerebrovascular Segmentation on Time-of-Flight (TOF) MRA Image

verfasst von: Xin Gao, Yoshikazu Uchiyama, Xiangrong Zhou, Takeshi Hara, Takahiko Asano, Hiroshi Fujita

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

The precise three-dimensional (3-D) segmentation of cerebral vessels from magnetic resonance angiography (MRA) images is essential for the detection of cerebrovascular diseases (e.g., occlusion, aneurysm). The complex 3-D structure of cerebral vessels and the low contrast of thin vessels in MRA images make precise segmentation difficult. We present a fast, fully automatic segmentation algorithm based on statistical model analysis and improved curve evolution for extracting the 3-D cerebral vessels from a time-of-flight (TOF) MRA dataset. Cerebral vessels and other tissue (brain tissue, CSF, and bone) in TOF MRA dataset are modeled by Gaussian distribution and combination of Rayleigh with several Gaussian distributions separately. The region distribution combined with gradient information is used in edge-strength of curve evolution as one novel mode. This edge-strength function is able to determine the boundary of thin vessels with low contrast around brain tissue accurately and robustly. Moreover, a fast level set method is developed to implement the curve evolution to assure high efficiency of the cerebrovascular segmentation. Quantitative comparisons with 10 sets of manual segmentation results showed that the average volume sensitivity, the average branch sensitivity, and average mean absolute distance error are 93.6%, 95.98%, and 0.333 mm, respectively. By applying the algorithm to 200 clinical datasets from three hospitals, it is demonstrated that the proposed algorithm can provide good quality segmentation capable of extracting a vessel with a one-voxel diameter in less than 2 min. Its accuracy and speed make this novel algorithm more suitable for a clinical computer-aided diagnosis system.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Arlart IP, Bongartz GM, Marchal G: Magnetic Resonance Angiography. Springer, Tokyo, 1995 Arlart IP, Bongartz GM, Marchal G: Magnetic Resonance Angiography. Springer, Tokyo, 1995
3.
Zurück zum Zitat Johnson DBS, Prince MR, Chenevert TL: Magnetic resonance angiography: A review. Academic Radiology 5(4):289–305, 1998CrossRef Johnson DBS, Prince MR, Chenevert TL: Magnetic resonance angiography: A review. Academic Radiology 5(4):289–305, 1998CrossRef
4.
Zurück zum Zitat Suri JS, Liu KC, Reden L, et al: A review on MR vascular image processing: Skeleton versus nonskeleton approaches: part II. Ieee Transactions on Information Technology in Biomedicine 6(4):338–350, 2002PubMedCrossRef Suri JS, Liu KC, Reden L, et al: A review on MR vascular image processing: Skeleton versus nonskeleton approaches: part II. Ieee Transactions on Information Technology in Biomedicine 6(4):338–350, 2002PubMedCrossRef
5.
Zurück zum Zitat Wink O, Niessen WJ, Viergever MA: Fast delineation and visualization of vessels in 3-D angiographic images. Ieee Transactions on Medical Imaging 19(4):337–346, 2000PubMedCrossRef Wink O, Niessen WJ, Viergever MA: Fast delineation and visualization of vessels in 3-D angiographic images. Ieee Transactions on Medical Imaging 19(4):337–346, 2000PubMedCrossRef
6.
Zurück zum Zitat Krissian K, Malandain G, Ayache N, et al: Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2):130–171, 2000CrossRef Krissian K, Malandain G, Ayache N, et al: Model-based detection of tubular structures in 3D images. Computer Vision and Image Understanding 80(2):130–171, 2000CrossRef
7.
Zurück zum Zitat Yim PJ, Choyke PL, Summers RM: Gray-scale skeletonization of small vessels in magnetic resonance angiography. Ieee Transactions on Medical Imaging 19(6):568–576, 2000PubMedCrossRef Yim PJ, Choyke PL, Summers RM: Gray-scale skeletonization of small vessels in magnetic resonance angiography. Ieee Transactions on Medical Imaging 19(6):568–576, 2000PubMedCrossRef
8.
Zurück zum Zitat Frangi AF, Niessen WJ, Hoogeveen RM, et al: Model-based quantitation of 3-D magnetic resonance angiographic images. Ieee Transactions on Medical Imaging 18(10):946–956, 1999PubMedCrossRef Frangi AF, Niessen WJ, Hoogeveen RM, et al: Model-based quantitation of 3-D magnetic resonance angiographic images. Ieee Transactions on Medical Imaging 18(10):946–956, 1999PubMedCrossRef
9.
Zurück zum Zitat Aylward SR, Bullitt E: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. Ieee Transactions on Medical Imaging 21(2):61–75, 2002PubMedCrossRef Aylward SR, Bullitt E: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. Ieee Transactions on Medical Imaging 21(2):61–75, 2002PubMedCrossRef
10.
Zurück zum Zitat Wilson DL, Noble JA: An adaptive segmentation algorithm for time-of-flight MRA data. Ieee Transactions on Medical Imaging 18(10):938–945, 1999PubMedCrossRef Wilson DL, Noble JA: An adaptive segmentation algorithm for time-of-flight MRA data. Ieee Transactions on Medical Imaging 18(10):938–945, 1999PubMedCrossRef
11.
Zurück zum Zitat Chung ACS, Noble JA: “Statistical 3D vessel segmentation using a Rician distribution”, Medical Image Computing and Computer-Assisted Intervention, Miccai'99. Proceedings 1679:82–89, 1999 Chung ACS, Noble JA: “Statistical 3D vessel segmentation using a Rician distribution”, Medical Image Computing and Computer-Assisted Intervention, Miccai'99. Proceedings 1679:82–89, 1999
12.
Zurück zum Zitat Chung ACS, Noble JA, Summers P: Fusing speed and phase information for vascular segmentation of phase contrast MR angiograms. Medical Image Analysis 6(2):109–128, 2002PubMedCrossRef Chung ACS, Noble JA, Summers P: Fusing speed and phase information for vascular segmentation of phase contrast MR angiograms. Medical Image Analysis 6(2):109–128, 2002PubMedCrossRef
13.
Zurück zum Zitat El-Baz A, Farag AA, Gimel'farb G, et al: “Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images,” Medical Image Computing and Computer-Assisted Intervention—Miccai 2005, Pt 1, vol. 3749, pp. 34–42, 2005 El-Baz A, Farag AA, Gimel'farb G, et al: “Automatic cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA images,” Medical Image Computing and Computer-Assisted Intervention—Miccai 2005, Pt 1, vol. 3749, pp. 34–42, 2005
14.
Zurück zum Zitat El-Baz A, Farag AA, Gimel'farb G, et al: “A new adaptive probabilistic model of blood vessels for segmenting MRA images,” Medical Image Computing and Computer-Assisted Intervention—Miccai 2006, Pt 2, vol. 4191, pp. 799–806, 2006 El-Baz A, Farag AA, Gimel'farb G, et al: “A new adaptive probabilistic model of blood vessels for segmenting MRA images,” Medical Image Computing and Computer-Assisted Intervention—Miccai 2006, Pt 2, vol. 4191, pp. 799–806, 2006
15.
Zurück zum Zitat Hassouna MS, Farag AA, Hushek S, et al: Cerebrovascular segmentation from TOF using stochastic models. Medical Image Analysis 10(1):2–18, 2006PubMedCrossRef Hassouna MS, Farag AA, Hushek S, et al: Cerebrovascular segmentation from TOF using stochastic models. Medical Image Analysis 10(1):2–18, 2006PubMedCrossRef
16.
Zurück zum Zitat Yu G, Li P, Miao Y, et al: Multiscale active contour model for vessel segmentation. Journal of Medical Engineering & Technology 32(1):1–9, 2008CrossRef Yu G, Li P, Miao Y, et al: Multiscale active contour model for vessel segmentation. Journal of Medical Engineering & Technology 32(1):1–9, 2008CrossRef
17.
Zurück zum Zitat Farag AA, Hassan H, Falk R, et al: 3D volume segmentation of MRA data sets using level sets—Image processing and display. Academic Radiology 11(4):419–435, 2004PubMedCrossRef Farag AA, Hassan H, Falk R, et al: 3D volume segmentation of MRA data sets using level sets—Image processing and display. Academic Radiology 11(4):419–435, 2004PubMedCrossRef
18.
Zurück zum Zitat Yan P, Kassim AA: Segmentation of volumetric MRA images by using capillary active contour. Medical Image Analysis 10(3):317–329, 2006PubMedCrossRef Yan P, Kassim AA: Segmentation of volumetric MRA images by using capillary active contour. Medical Image Analysis 10(3):317–329, 2006PubMedCrossRef
19.
Zurück zum Zitat Deschamps T, Schwartz P, Trebotich D et al: “Vessel segmentation and blood flow simulation using Level-Sets and embedded boundary methods,” in Conference of Computer Assisted Radiology and Surgery (CARS), Chicago, USA, pp. 75–80, 2004 Deschamps T, Schwartz P, Trebotich D et al: “Vessel segmentation and blood flow simulation using Level-Sets and embedded boundary methods,” in Conference of Computer Assisted Radiology and Surgery (CARS), Chicago, USA, pp. 75–80, 2004
20.
Zurück zum Zitat Manniesing R, Velthuis BK, van Leeuwen MS, et al: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Medical Image Analysis 10(2):200–214, 2006PubMedCrossRef Manniesing R, Velthuis BK, van Leeuwen MS, et al: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Medical Image Analysis 10(2):200–214, 2006PubMedCrossRef
21.
Zurück zum Zitat Masutani Y, Kurihara T, Suzuki M, et al: “Quantitative Vascular Shape Analysis for 3D MR-Angiography Using Mathematical Morphology”, in Conference of Computer Vision. Virtual Reality and Robotics in Medicine, Nice, France, 1995, pp 449–454 Masutani Y, Kurihara T, Suzuki M, et al: “Quantitative Vascular Shape Analysis for 3D MR-Angiography Using Mathematical Morphology”, in Conference of Computer Vision. Virtual Reality and Robotics in Medicine, Nice, France, 1995, pp 449–454
22.
Zurück zum Zitat Zana F, Klein JC: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. Ieee Transactions on Image Processing 10(7):1010–1019, 2001PubMedCrossRef Zana F, Klein JC: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. Ieee Transactions on Image Processing 10(7):1010–1019, 2001PubMedCrossRef
23.
Zurück zum Zitat Flasque N, Desvignes M, Constans JM, et al: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis 5(3):173–183, 2001PubMedCrossRef Flasque N, Desvignes M, Constans JM, et al: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis 5(3):173–183, 2001PubMedCrossRef
24.
Zurück zum Zitat Passat N, Ronse C, Baruthio J, et al: Region-growing segmentation of brain vessels: An atlas-based automatic approach. Journal of Magnetic Resonance Imaging 21(6):715–725, 2005PubMedCrossRef Passat N, Ronse C, Baruthio J, et al: Region-growing segmentation of brain vessels: An atlas-based automatic approach. Journal of Magnetic Resonance Imaging 21(6):715–725, 2005PubMedCrossRef
25.
Zurück zum Zitat Wells WM, Grimson WEL, Kikinis R, et al: Adaptive segmentation of MRI data. Ieee Transactions on Medical Imaging 15(4):429–442, 1996PubMedCrossRef Wells WM, Grimson WEL, Kikinis R, et al: Adaptive segmentation of MRI data. Ieee Transactions on Medical Imaging 15(4):429–442, 1996PubMedCrossRef
26.
Zurück zum Zitat Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete Data Via Em Algorithm. Journal of the Royal Statistical Society Series B-Methodological 39(1):1–38, 1977 Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete Data Via Em Algorithm. Journal of the Royal Statistical Society Series B-Methodological 39(1):1–38, 1977
27.
Zurück zum Zitat Bilmes JA: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, Berkeley, California, 1998 Bilmes JA: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, Berkeley, California, 1998
28.
Zurück zum Zitat Patist JP: “A Fast Implementation of the EM Algorithm for Mixture of Multinomials”, in Conference of Advanced Data Mining and Applications. Xi'An, China, 2006, pp 517–524 Patist JP: “A Fast Implementation of the EM Algorithm for Mixture of Multinomials”, in Conference of Advanced Data Mining and Applications. Xi'An, China, 2006, pp 517–524
29.
Zurück zum Zitat Alvarez L, Guichard F, Lions PL, et al: Axioms and Fundamental Equations of Image-Processing. Archive for Rational Mechanics and Analysis 123(3):199–257, 1993CrossRef Alvarez L, Guichard F, Lions PL, et al: Axioms and Fundamental Equations of Image-Processing. Archive for Rational Mechanics and Analysis 123(3):199–257, 1993CrossRef
30.
Zurück zum Zitat Caselles V, Catte F, Coll T, et al: A Geometric Model for Active Contours in Image-Processing. Numerische Mathematik 66(1):1–31, 1993CrossRef Caselles V, Catte F, Coll T, et al: A Geometric Model for Active Contours in Image-Processing. Numerische Mathematik 66(1):1–31, 1993CrossRef
31.
Zurück zum Zitat Shah J, “Shape recovery from noisy images by curve evolution,” in Conference on Signal and Image Processing, Las Vegas, U.S.A., 1995 Shah J, “Shape recovery from noisy images by curve evolution,” in Conference on Signal and Image Processing, Las Vegas, U.S.A., 1995
32.
Zurück zum Zitat Tsai A, Yezzi A, Willsky AS: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. Ieee Transactions on Image Processing 10(8):1169–1186, 2001PubMedCrossRef Tsai A, Yezzi A, Willsky AS: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. Ieee Transactions on Image Processing 10(8):1169–1186, 2001PubMedCrossRef
33.
Zurück zum Zitat Malladi R, Sethian JA, Vemuri BC: Shape Modeling with Front Propagation—a Level Set Approach. Ieee Transactions on Pattern Analysis and Machine Intelligence 17(2):158–175, 1995CrossRef Malladi R, Sethian JA, Vemuri BC: Shape Modeling with Front Propagation—a Level Set Approach. Ieee Transactions on Pattern Analysis and Machine Intelligence 17(2):158–175, 1995CrossRef
34.
Zurück zum Zitat Caselles V, Kimmel R, Sapiro G: Geodesic active contours. International Journal of Computer Vision 22(1):61–79, 1997CrossRef Caselles V, Kimmel R, Sapiro G: Geodesic active contours. International Journal of Computer Vision 22(1):61–79, 1997CrossRef
35.
Zurück zum Zitat Siddiqi K, Lauziere YB, Tannenbaum A, et al: Area and length minimizing flows for shape segmentation. Ieee Transactions on Image Processing 7(3):433–443, 1998PubMedCrossRef Siddiqi K, Lauziere YB, Tannenbaum A, et al: Area and length minimizing flows for shape segmentation. Ieee Transactions on Image Processing 7(3):433–443, 1998PubMedCrossRef
36.
Zurück zum Zitat Chakraborty A, Staib LH, Duncan JS: Deformable boundary finding in medical images by integrating gradient and region information. Ieee Transactions on Medical Imaging 15(6):859–870, 1996PubMedCrossRef Chakraborty A, Staib LH, Duncan JS: Deformable boundary finding in medical images by integrating gradient and region information. Ieee Transactions on Medical Imaging 15(6):859–870, 1996PubMedCrossRef
37.
Zurück zum Zitat Zhu SC, Yuille A: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. Ieee Transactions on Pattern Analysis and Machine Intelligence 18(9):884–900, 1996CrossRef Zhu SC, Yuille A: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. Ieee Transactions on Pattern Analysis and Machine Intelligence 18(9):884–900, 1996CrossRef
38.
Zurück zum Zitat Jones TN, Metaxas DN: “Image segmentation based on the integration of pixel affinity and deformable models”, in Conference on Computer Vision and Pattern Recognition (CVPR). Santa Barbara, USA, 1998, pp 330–337 Jones TN, Metaxas DN: “Image segmentation based on the integration of pixel affinity and deformable models”, in Conference on Computer Vision and Pattern Recognition (CVPR). Santa Barbara, USA, 1998, pp 330–337
39.
Zurück zum Zitat Chesnaud C, Refregier P, Boulet V: Statistical region snake-based segmentation adapted to different physical noise models. Ieee Transactions on Pattern Analysis and Machine Intelligence 21(11):1145–1157, 1999CrossRef Chesnaud C, Refregier P, Boulet V: Statistical region snake-based segmentation adapted to different physical noise models. Ieee Transactions on Pattern Analysis and Machine Intelligence 21(11):1145–1157, 1999CrossRef
40.
Zurück zum Zitat Mumford D, Shah J: Optimal Approximations by Piecewise Smooth Functions and Associated Variational-Problems. Communications on Pure and Applied Mathematics 42(5):577–685, 1989CrossRef Mumford D, Shah J: Optimal Approximations by Piecewise Smooth Functions and Associated Variational-Problems. Communications on Pure and Applied Mathematics 42(5):577–685, 1989CrossRef
41.
Zurück zum Zitat Baillard C, Barillot C, Bouthemy P: Robust adaptive segmentation of 3D medical images with level sets, INRIA Technical Report, 2000 Baillard C, Barillot C, Bouthemy P: Robust adaptive segmentation of 3D medical images with level sets, INRIA Technical Report, 2000
42.
Zurück zum Zitat Descoteauxa M, Collinsb DL, Siddiqi K: A geometric flow for segmenting vasculature in proton-density weighted MRI. Medical Image Analysis 12(4):497–513, 2008CrossRef Descoteauxa M, Collinsb DL, Siddiqi K: A geometric flow for segmenting vasculature in proton-density weighted MRI. Medical Image Analysis 12(4):497–513, 2008CrossRef
43.
Zurück zum Zitat Frangi AF, Niessen WJ, Vincken KL et al: “Multiscale Vessel Enhancement Filtering ” in Conference on Medical Image Computing and Computer-Assisted Interventation (MICCAI), Cambridge, U.S.A., 1998, pp. 130–137 Frangi AF, Niessen WJ, Vincken KL et al: “Multiscale Vessel Enhancement Filtering ” in Conference on Medical Image Computing and Computer-Assisted Interventation (MICCAI), Cambridge, U.S.A., 1998, pp. 130–137
44.
Zurück zum Zitat Cai WL, Dachille F, Harris GJ, et al: “Vesselness propagation: a fast interactive vessel segmentation method,” in Processings of the SPIE. Medical Imaging, San Diego, U.S.A, 2006, pp 1343–1351 Cai WL, Dachille F, Harris GJ, et al: “Vesselness propagation: a fast interactive vessel segmentation method,” in Processings of the SPIE. Medical Imaging, San Diego, U.S.A, 2006, pp 1343–1351
45.
Zurück zum Zitat Ye DH, Kwon DJ, Yun ID, et al: “Fast multiscale vessel enhancement filtering,” in Processings of the SPIE, Medical Imaging, San Diego, U.S.A, pp. 691423–691428, 2008 Ye DH, Kwon DJ, Yun ID, et al: “Fast multiscale vessel enhancement filtering,” in Processings of the SPIE, Medical Imaging, San Diego, U.S.A, pp. 691423–691428, 2008
46.
Zurück zum Zitat Sethian JA: Curvature and the Evolution of Fronts. Communications in Mathematical Physics 101(4):487–499, 1985CrossRef Sethian JA: Curvature and the Evolution of Fronts. Communications in Mathematical Physics 101(4):487–499, 1985CrossRef
47.
Zurück zum Zitat Sethian JA: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, New York, U.S.A, 1999 Sethian JA: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, New York, U.S.A, 1999
48.
Zurück zum Zitat Osher S, Fedkiw RP: Level set methods: An overview and some recent results. Journal of Computational Physics 169(2):463–502, 2001CrossRef Osher S, Fedkiw RP: Level set methods: An overview and some recent results. Journal of Computational Physics 169(2):463–502, 2001CrossRef
49.
Zurück zum Zitat Lie J, Lysaker M, Tai XC: A binary level set model and some applications to Mumford-Shah image segmentation. Ieee Transactions on Image Processing 15(5):1171–1181, 2006PubMedCrossRef Lie J, Lysaker M, Tai XC: A binary level set model and some applications to Mumford-Shah image segmentation. Ieee Transactions on Image Processing 15(5):1171–1181, 2006PubMedCrossRef
50.
Zurück zum Zitat Yang Y: “Image segmentation and shape analysis of blood vessels with applications to coronary atherosclerosis,” School of Biomedical Engineering, Georgia Institute of Technology, 2007 Yang Y: “Image segmentation and shape analysis of blood vessels with applications to coronary atherosclerosis,” School of Biomedical Engineering, Georgia Institute of Technology, 2007
52.
Zurück zum Zitat Uchiyama Y, Gao X, Hara T, et al: “Computerized detection of unruptured aneurysms in MRA images: Reduction of false positives using anatomical location feature,” in SPIE Medical Imaging: Computer-aided diagnosis, San Diego, U.S., 2008, pp. 69151Q-1–69151Q-8 Uchiyama Y, Gao X, Hara T, et al: “Computerized detection of unruptured aneurysms in MRA images: Reduction of false positives using anatomical location feature,” in SPIE Medical Imaging: Computer-aided diagnosis, San Diego, U.S., 2008, pp. 69151Q-1–69151Q-8
Metadaten
Titel
A Fast and Fully Automatic Method for Cerebrovascular Segmentation on Time-of-Flight (TOF) MRA Image
verfasst von
Xin Gao
Yoshikazu Uchiyama
Xiangrong Zhou
Takeshi Hara
Takahiko Asano
Hiroshi Fujita
Publikationsdatum
01.08.2011
Verlag
Springer-Verlag
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 4/2011
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-010-9326-1

Weitere Artikel der Ausgabe 4/2011

Journal of Digital Imaging 4/2011 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.