Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019

25.10.2018 | Research Article

A framework for constraining image SNR loss due to MR raw data compression

verfasst von: Matthew C. Restivo, Adrienne E. Campbell-Washburn, Peter Kellman, Hui Xue, Rajiv Ramasawmy, Michael S. Hansen

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Computationally intensive image reconstruction algorithms can be used online during MRI exams by streaming data to remote high-performance computers. However, data acquisition rates often exceed the bandwidth of the available network resources creating a bottleneck. Data compression is, therefore, desired to ensure fast data transmission.

Methods

The added noise variance due to compression was determined through statistical analysis for two compression libraries (one custom and one generic) that were implemented in this framework. Limiting the compression error variance relative to the measured thermal noise allowed for image signal-to-noise ratio loss to be explicitly constrained.

Results

Achievable compression ratios are dependent on image SNR, user-defined SNR loss tolerance, and acquisition type. However, a 1% reduction in SNR yields approximately four to ninefold compression ratios across MRI acquisition strategies. For free-breathing cine data reconstructed in the cloud, the streaming bandwidth was reduced from 37 to 6.1 MB/s, alleviating the network transmission bottleneck.

Conclusion

Our framework enabled data compression for online reconstructions and allowed SNR loss to be constrained based on a user-defined SNR tolerance. This practical tool will enable real-time data streaming and greater than fourfold faster cloud upload times.
Literatur
1.
Zurück zum Zitat Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N (2016) Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol 51(6):349–364CrossRefPubMedPubMedCentral Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N (2016) Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol 51(6):349–364CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Hansen MS, Sorensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69(6):1768–1776CrossRefPubMed Hansen MS, Sorensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69(6):1768–1776CrossRefPubMed
4.
Zurück zum Zitat Xue H, Inati S, Sorensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73(3):1015–1025CrossRefPubMed Xue H, Inati S, Sorensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73(3):1015–1025CrossRefPubMed
5.
Zurück zum Zitat Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput Gr 20(12):2674–2683CrossRef Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput Gr 20(12):2674–2683CrossRef
6.
Zurück zum Zitat Hübbe N, Wegener A, Kunkel JM, Ling Y, Ludwig T (2013) Evaluating lossy compression on climate data. In: Proceedings—supercomputing—28th international supercomputing conference, ISC 2013, Leipzig, Germany, pp 343–356 Hübbe N, Wegener A, Kunkel JM, Ling Y, Ludwig T (2013) Evaluating lossy compression on climate data. In: Proceedings—supercomputing—28th international supercomputing conference, ISC 2013, Leipzig, Germany, pp 343–356
7.
Zurück zum Zitat Hansen MS, Kellman P (2015) Image reconstruction: an overview for clinicians. J Magn Reson Imaging 41(3):573–585CrossRefPubMed Hansen MS, Kellman P (2015) Image reconstruction: an overview for clinicians. J Magn Reson Imaging 41(3):573–585CrossRefPubMed
8.
Zurück zum Zitat Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651CrossRefPubMed Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651CrossRefPubMed
10.
Zurück zum Zitat Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Atkinson D, Kellman P, Xue H, Campbell-Washburn AE, Sørensen TS (2017) ISMRM Raw data format: a proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Atkinson D, Kellman P, Xue H, Campbell-Washburn AE, Sørensen TS (2017) ISMRM Raw data format: a proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed
11.
Zurück zum Zitat Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857CrossRefPubMedPubMedCentral Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Xue H, Kellman P, LaRocca G, Arai AE, Hansen MS (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15(1):102CrossRefPubMedPubMedCentral Xue H, Kellman P, LaRocca G, Arai AE, Hansen MS (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15(1):102CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Cross R, Olivieri L, O’Brien K, Kellman P, Xue H, Hansen M (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral Cross R, Olivieri L, O’Brien K, Kellman P, Xue H, Hansen M (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Yilmaz P, Wallexan K, Aben J, Moelker A (2018) Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images. J Digit Imaging 31:670–679CrossRefPubMedPubMedCentral Yilmaz P, Wallexan K, Aben J, Moelker A (2018) Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images. J Digit Imaging 31:670–679CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Zhu B, Liu J, Cauley S, Rosen B, Rosen M (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed Zhu B, Liu J, Cauley S, Rosen B, Rosen M (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed
17.
Zurück zum Zitat Wang G, Ye JC, Mueller K, Fessler J (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–10296CrossRefPubMed Wang G, Ye JC, Mueller K, Fessler J (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–10296CrossRefPubMed
18.
Zurück zum Zitat Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071CrossRefPubMed Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071CrossRefPubMed
Metadaten
Titel
A framework for constraining image SNR loss due to MR raw data compression
verfasst von
Matthew C. Restivo
Adrienne E. Campbell-Washburn
Peter Kellman
Hui Xue
Rajiv Ramasawmy
Michael S. Hansen
Publikationsdatum
25.10.2018
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 2/2019
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0709-5

Weitere Artikel der Ausgabe 2/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.