Skip to main content
Erschienen in: Brain Structure and Function 6/2021

30.04.2021 | Original Article

A fully segmented 3D anatomical atlas of a lizard brain

verfasst von: Daniel Hoops, Hanyi Weng, Ayesha Shahid, Philip Skorzewski, Andrew L. Janke, Jason P. Lerch, John G. Sled

Erschienen in: Brain Structure and Function | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

As the relevance of lizards in evolutionary neuroscience increases, so does the need for more accurate anatomical references. Moreover, the use of magnetic resonance imaging (MRI) in evolutionary neuroscience is becoming more widespread; this represents a fundamental methodological shift that opens new avenues of investigative possibility but also poses new challenges. Here, we aim to facilitate this shift by providing a three-dimensional segmentation atlas of the tawny dragon brain. The tawny dragon (Ctenophorus decresii) is an Australian lizard of increasing importance as a model system in ecology and, as a member of the agamid lizards, in evolution. Based on a consensus average 3D image generated from the MRIs of 13 male tawny dragon heads, we identify and segment 224 structures visible across the entire lizard brain. We describe the relevance of this atlas to the field of evolutionary neuroscience and propose further experiments for which this atlas can provide the foundation. This advance in defining lizard neuroanatomy will facilitate numerous studies in evolutionary neuroscience. The atlas is available for download as a supplementary material to this manuscript and through the Open Science Framework (OSF; https://​doi.​org/​10.​17605/​OSF.​IO/​UJENQ).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Baeckens S, Herrel A, Broeckhoven C, Vasilopoulou-Kampitsi M, Huyghe K, Goyens J et al (2017) Evolutionary morphology of the lizard chemosensory system. Sci Rep 7(1):1–13 Baeckens S, Herrel A, Broeckhoven C, Vasilopoulou-Kampitsi M, Huyghe K, Goyens J et al (2017) Evolutionary morphology of the lizard chemosensory system. Sci Rep 7(1):1–13
Zurück zum Zitat Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F (2018) Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology. Proc Biol Sci 285(1877):20180178PubMedPubMedCentral Behroozi M, Billings BK, Helluy X, Manger PR, Güntürkün O, Ströckens F (2018) Functional MRI in the Nile crocodile: a new avenue for evolutionary neurobiology. Proc Biol Sci 285(1877):20180178PubMedPubMedCentral
Zurück zum Zitat Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O et al (2020) A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 225(2):683–703PubMed Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O et al (2020) A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 225(2):683–703PubMed
Zurück zum Zitat Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana (Linnaeus). J Comp Neurol 149(4):439–462PubMed Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana (Linnaeus). J Comp Neurol 149(4):439–462PubMed
Zurück zum Zitat Calabrese E, Badea A, Cofer GP, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25(11):4628–4637PubMedPubMedCentral Calabrese E, Badea A, Cofer GP, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25(11):4628–4637PubMedPubMedCentral
Zurück zum Zitat Chakravarty MM, Steadman P, Eede MC, Calcott RD, Gu V, Shaw P et al (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34(10):2635–2654PubMed Chakravarty MM, Steadman P, Eede MC, Calcott RD, Gu V, Shaw P et al (2013) Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 34(10):2635–2654PubMed
Zurück zum Zitat Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4):1355–1366PubMed Collins DL, Pruessner JC (2010) Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. Neuroimage 52(4):1355–1366PubMed
Zurück zum Zitat Corral JMD, Miralles A, Nicolau MC, Planas B, Rial RV (1990) Stereotaxic atlas for the lizard Gallotia galloti. Prog Neurobiol 34(3):185–196PubMed Corral JMD, Miralles A, Nicolau MC, Planas B, Rial RV (1990) Stereotaxic atlas for the lizard Gallotia galloti. Prog Neurobiol 34(3):185–196PubMed
Zurück zum Zitat Cruce JAF (1974) A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 153(3):215–238PubMed Cruce JAF (1974) A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 153(3):215–238PubMed
Zurück zum Zitat Cruce WLR, Newman DB (1981) Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus. J Comp Neurol 198(2):185–207PubMed Cruce WLR, Newman DB (1981) Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus. J Comp Neurol 198(2):185–207PubMed
Zurück zum Zitat Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213(6):525–533PubMed Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213(6):525–533PubMed
Zurück zum Zitat Dı́az C, Glover JC (2002) Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations. Brain Res Bull 57(3–4):307–312PubMed Dı́az C, Glover JC (2002) Comparative aspects of the hodological organization of the vestibular nuclear complex and related neuron populations. Brain Res Bull 57(3–4):307–312PubMed
Zurück zum Zitat Dickie DA, Shenkin SD, Anblagan D, Lee J, Cabez MB, Rodriguez D et al (2017) Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front Neuroinform 19:11 Dickie DA, Shenkin SD, Anblagan D, Lee J, Cabez MB, Rodriguez D et al (2017) Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front Neuroinform 19:11
Zurück zum Zitat Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42(1):60–69PubMed Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 42(1):60–69PubMed
Zurück zum Zitat Essen DCV, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. Neuroimage 15(80):62–79 Essen DCV, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K (2013) The WU-Minn human connectome project: an overview. Neuroimage 15(80):62–79
Zurück zum Zitat Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55(4):1435–1442PubMed Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55(4):1435–1442PubMed
Zurück zum Zitat Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174(2):217–236PubMed Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174(2):217–236PubMed
Zurück zum Zitat Hamilton AJ, May RM, Waters EK (2015) Zoology: here be dragons. Nature 1(520):42–43 Hamilton AJ, May RM, Waters EK (2015) Zoology: here be dragons. Nature 1(520):42–43
Zurück zum Zitat Hoops D (2018) The secret caverns of the dragon’s brain: current and potential contributions of lizards to evolutionary neuroscience. Brain Behav Evol 25:1–3 Hoops D (2018) The secret caverns of the dragon’s brain: current and potential contributions of lizards to evolutionary neuroscience. Brain Behav Evol 25:1–3
Zurück zum Zitat Hoops D, Ullmann JFP, Janke AL, Vidal-García M, Gardner TS, Dwihapsari Y et al (2017a) Sexual selection predicts brain structure in dragon lizards. J Evol Biol 30(2):244–256PubMed Hoops D, Ullmann JFP, Janke AL, Vidal-García M, Gardner TS, Dwihapsari Y et al (2017a) Sexual selection predicts brain structure in dragon lizards. J Evol Biol 30(2):244–256PubMed
Zurück zum Zitat Hoops D, Vidal-García M, Ullmann JFP, Janke AL, Stait-Gardner T, Duchêne DA et al (2017b) Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav Evol 90(3):211–223PubMed Hoops D, Vidal-García M, Ullmann JFP, Janke AL, Stait-Gardner T, Duchêne DA et al (2017b) Evidence for concerted and mosaic brain evolution in dragon lizards. Brain Behav Evol 90(3):211–223PubMed
Zurück zum Zitat Hoops D, Desfilis E, Ullmann JFP, Janke AL, Stait-Gardner T, Devenyi GA et al (2018) A 3D MRI-based atlas of a lizard brain. J Comp Neurol 526(16):2511–2547PubMed Hoops D, Desfilis E, Ullmann JFP, Janke AL, Stait-Gardner T, Devenyi GA et al (2018) A 3D MRI-based atlas of a lizard brain. J Comp Neurol 526(16):2511–2547PubMed
Zurück zum Zitat Hughes DF, Walker EM, Gignac PM, Martinez A, Negishi K, Lieb CS et al (2016) Rescuing perishable neuroanatomical information from a threatened biodiversity hotspot: remote field methods for brain tissue preservation validated by cytoarchitectonic analysis, immunohistochemistry, and X-ray microcomputed tomography. PLoS ONE 11(5):e0155824PubMedPubMedCentral Hughes DF, Walker EM, Gignac PM, Martinez A, Negishi K, Lieb CS et al (2016) Rescuing perishable neuroanatomical information from a threatened biodiversity hotspot: remote field methods for brain tissue preservation validated by cytoarchitectonic analysis, immunohistochemistry, and X-ray microcomputed tomography. PLoS ONE 11(5):e0155824PubMedPubMedCentral
Zurück zum Zitat Hurley JC (2020) Forrest plots or caterpillar plots? J Clin Epidemiol 121:109–110PubMed Hurley JC (2020) Forrest plots or caterpillar plots? J Clin Epidemiol 121:109–110PubMed
Zurück zum Zitat Luo Q, Lu H, Lu H, Senseman D, Worsley K, Yang Y et al (2009) Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not? Neuroimage 47(4):1268–1276PubMed Luo Q, Lu H, Lu H, Senseman D, Worsley K, Yang Y et al (2009) Physiologically evoked neuronal current MRI in a bloodless turtle brain: detectable or not? Neuroimage 47(4):1268–1276PubMed
Zurück zum Zitat Macrı̀ S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 10(1):1–16 Macrı̀ S, Savriama Y, Khan I, Di-Poï N (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 10(1):1–16
Zurück zum Zitat McLean CA, Stuart-Fox DM (2014) Geographic variation in animal colour polymorphisms and its role in speciation. Biol Rev 89(4):860–873PubMed McLean CA, Stuart-Fox DM (2014) Geographic variation in animal colour polymorphisms and its role in speciation. Biol Rev 89(4):860–873PubMed
Zurück zum Zitat Mechling AE, Hübner NS, Lee H-L, Hennig J, von Elverfeldt D, Harsan L-A (2014) Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. Neuroimage 1(96):203–215 Mechling AE, Hübner NS, Lee H-L, Hennig J, von Elverfeldt D, Harsan L-A (2014) Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI. Neuroimage 1(96):203–215
Zurück zum Zitat Nieman BJ (2005) Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genom 24(2):154–162 Nieman BJ (2005) Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genom 24(2):154–162
Zurück zum Zitat Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 25:4 Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 25:4
Zurück zum Zitat Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana. J Comp Neurol 130(2):109–147PubMed Northcutt RG (1967) Architectonic studies of the telencephalon of Iguana iguana. J Comp Neurol 130(2):109–147PubMed
Zurück zum Zitat Powers A, Reiner A (1980) A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta). J Hirnforsch 21(2):125–159PubMed Powers A, Reiner A (1980) A stereotaxic atlas of the forebrain and midbrain of the eastern painted turtle (Chrysemys picta picta). J Hirnforsch 21(2):125–159PubMed
Zurück zum Zitat R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, London R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, London
Zurück zum Zitat Reiter S, Liaw H-P, Yamawaki TM, Naumann RK, Laurent G (2017) On the value of reptilian brains to map the evolution of the hippocampal formation. Brain Behav Evol 90(1):41–52PubMed Reiter S, Liaw H-P, Yamawaki TM, Naumann RK, Laurent G (2017) On the value of reptilian brains to map the evolution of the hippocampal formation. Brain Behav Evol 90(1):41–52PubMed
Zurück zum Zitat Roth TC, Krochmal AR, LaDage LD (2019) Reptilian cognition: a more complex picture via integration of neurological mechanisms, behavioral constraints, and evolutionary context. BioEssays 41(8):1900033 Roth TC, Krochmal AR, LaDage LD (2019) Reptilian cognition: a more complex picture via integration of neurological mechanisms, behavioral constraints, and evolutionary context. BioEssays 41(8):1900033
Zurück zum Zitat Smeets WJAJ, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254(1):1–19PubMed Smeets WJAJ, Hoogland PV, Lohman AHM (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254(1):1–19PubMed
Zurück zum Zitat Stuart-Fox D, Aulsebrook A, Rankin KJ, Dong CM, McLean CA (2021) Convergence and divergence in lizard colour polymorphisms. Biol Rev 96(1):289–309PubMed Stuart-Fox D, Aulsebrook A, Rankin KJ, Dong CM, McLean CA (2021) Convergence and divergence in lizard colour polymorphisms. Biol Rev 96(1):289–309PubMed
Zurück zum Zitat Szabo B, Noble DW, Whiting MJ (2020) Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev 96(2):331–356 Szabo B, Noble DW, Whiting MJ (2020) Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol Rev 96(2):331–356
Zurück zum Zitat ten Donkelaar HJ, Bangma GC, Barbas-Henry HA, de Huizen R, Wolters JG (2012) The brain stem in a lizard, Varanus exanthematicus. Springer ten Donkelaar HJ, Bangma GC, Barbas-Henry HA, de Huizen R, Wolters JG (2012) The brain stem in a lizard, Varanus exanthematicus. Springer
Zurück zum Zitat Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48 Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48
Zurück zum Zitat Vincent RD, Neelin P, Khalili-Mahani N, Janke AL, Fonov VS, Robbins SM et al (2016) MINC 2.0: a flexible format for multi-modal images. Front Neuroinform 10:35PubMedPubMedCentral Vincent RD, Neelin P, Khalili-Mahani N, Janke AL, Fonov VS, Robbins SM et al (2016) MINC 2.0: a flexible format for multi-modal images. Front Neuroinform 10:35PubMedPubMedCentral
Zurück zum Zitat Yewers MSC, Pryke S, Stuart-Fox DM (2016) Behavioural differences across contexts may indicate morph-specific strategies in the lizard Ctenophorus decresii. Anim Behav 111(C):329–339 Yewers MSC, Pryke S, Stuart-Fox DM (2016) Behavioural differences across contexts may indicate morph-specific strategies in the lizard Ctenophorus decresii. Anim Behav 111(C):329–339
Metadaten
Titel
A fully segmented 3D anatomical atlas of a lizard brain
verfasst von
Daniel Hoops
Hanyi Weng
Ayesha Shahid
Philip Skorzewski
Andrew L. Janke
Jason P. Lerch
John G. Sled
Publikationsdatum
30.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2021
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02282-z

Weitere Artikel der Ausgabe 6/2021

Brain Structure and Function 6/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.