01.12.2015 | Research article | Ausgabe 1/2015 Open Access

A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis
- Zeitschrift:
- BMC Pulmonary Medicine > Ausgabe 1/2015
Electronic supplementary material
Competing interests
Authors’ contributions
Background
Methods
Study populations
PBMC sample collection, RNA isolation, microarray hybridization, and data processing
Identification of gene co-expression modules correlated with clinical traits in training cohort
Identification of differentially expressed genes in the training cohort
Survival analysis
Compilation of the IPF prognostic predictor gene set from the training cohort for a genomic model construction
Development and validation of the functional genomic model to predict prognosis
Functional pathways enrichment analysis
IPF diagnosis prediction using prognosis index derived from the functional genomic model
Statistical analysis
Results
Demographic and clinical characteristics of patients with IPF
Characteristic
|
Training cohort (
n = 45)
|
UCV cohort (
n = 21)
|
UPV cohort (
n = 75)
|
p-value
|
---|---|---|---|---|
Age, mean (±SD)
|
67.1 (8.2)
|
68.9 (8.2)
|
68.5 (7.8)
|
0.48
|
Male gender,
n (%)
|
40 (90)
|
15 (71.4)
|
52 (69.3)
|
0.05
|
White race,
n (%)
|
37 (82.2)
|
18 (81.8)
|
73 (97.3)
|
0.004
|
Follow-up months, mean (±SD)
|
18.8 (11.9)
|
43.8 (29.4)
|
23.5 (12.7)
|
<0.001
|
Months to death, mean (±SD)
|
12.7 (10.9)
|
26.8 (20.1)
|
14.2 (10.6)
|
0.02
|
FVC % predicted, mean (±SD)
|
60.6 (14.3)
|
64.7 (12.7)
|
65.4 (16.7)
|
0.25
|
DLCO % predicted, mean (±SD)
|
43.4 (17.7)
|
43.2 (15.6)
|
48.9 (18.6)
|
0.19
|
CPI, mean (±SD)
|
55.6 (13)
|
54.7 (10.7)
|
50.7 (13.7)
|
0.11
|
Lung transplantation,
n (%)
|
1 (2.2)
|
2 (9.5)
|
15 (20)
|
0.009
|
Identification of gene co-expression modules correlated with clinical traits in training cohort
Compilation of the set of IPF prognostic predictor genes
Gene
|
FC
|
Gene
|
FC
|
Gene
|
FC
|
Gene
|
FC
|
---|---|---|---|---|---|---|---|
IL1R2
¥
|
2.0
|
PPWD1
|
−1.7
|
ASF1A
|
−1.6
|
ABCD2
|
−1.5
|
ERAF
§
|
2.0
|
CETN3
|
−1.6
|
LMO7
|
−1.6
|
GZMK
|
−1.5
|
CEACAM8
¥
|
1.8
|
SH2D1A
|
−1.6
|
GCET2
|
−1.6
|
TRIM52
|
−1.5
|
ARG1
¥
|
1.6
|
SLC39A10
|
−1.6
|
PAQR8
|
−1.6
|
C8orf15
|
−1.5
|
FOXO3
§
|
1.5
|
SHPRH
|
−1.6
|
BIRC3
|
−1.6
|
ITK
|
−1.5
|
TNS1
§
|
1.5
|
WDR75
|
−1.6
|
CAMK4
|
−1.6
|
ICOS
|
−1.5
|
CYP4F2
¥
|
1.5
|
C14orf64
|
−1.6
|
ZC3H6
|
−1.6
|
FHIT
|
−1.5
|
CYP4F3
¥
|
1.5
|
KPNA5
|
−1.6
|
CD28
|
−1.6
|
TSEPA
|
−1.5
|
ARHGAP5
|
−1.8
|
NOP58
|
−1.6
|
GTPBp0
|
−1.6
|
NPCDR1
|
−1.5
|
ORC3L
|
−1.8
|
PARp5
|
−1.6
|
C5orf51
|
−1.6
|
OXNAD1
|
−1.5
|
ZNF100
|
−1.8
|
PRO0471
|
−1.6
|
TRBC1
|
−1.6
|
IL7R
|
−1.5
|
UTp5
|
−1.8
|
RCAN3
|
−1.6
|
CAMK2D
|
−1.5
|
HLA-DQA1
|
−1.5
|
ANKRD36B
|
−1.8
|
C7orf64
|
−1.6
|
PPM1K
|
−1.5
|
TMEM156
|
−1.5
|
LOC399753
|
−1.8
|
ANKRD36
|
−1.6
|
CCDC76
|
−1.5
|
HLA-DQA1
|
−1.5
|
KCNA3
|
−1.8
|
GPR174
|
−1.6
|
CASD1
|
−1.5
|
LOC401397
|
−1.5
|
RHOH
|
−1.8
|
NDUFAF4
|
−1.6
|
pRY10
|
−1.5
|
CDK6
|
−1.5
|
LCK
|
−1.8
|
CCDC141
|
−1.6
|
DPP4
|
−1.5
|
GCNT4
|
−1.5
|
C16orf52
|
−1.7
|
GPR18
|
−1.6
|
S1PR1
|
−1.5
|
NELL2
|
−1.5
|
TC2N
|
−1.7
|
DDX60
|
−1.6
|
ITGA6
|
−1.5
|
FLJ33630
|
−1.5
|
HIVEp
|
−1.7
|
TMEM209
|
−1.6
|
GBP4
|
−1.5
|
TRAT1
|
−1.5
|
KIF3A
|
−1.7
|
GVIN1
|
−1.6
|
ABCE1
|
−1.5
|
LEF1
|
−1.5
|
IFT80
|
−1.7
|
TMEM161B
|
−1.6
|
TXK
|
−1.5
|
FCRL3
|
−1.5
|
TIA1
|
−1.7
|
USP53
|
−1.6
|
TRAF5
|
−1.5
|
GUSBL2
|
−1.5
|
ZNF83
|
−1.7
|
TRAJ17
|
−1.6
|
SLAMF6
|
−1.5
|
SEPSECS
|
−1.5
|
SETDB2
|
−1.7
|
MRPL1
|
−1.6
|
CD96
|
−1.5
|
BTLA
|
−1.5
|
WDR36
|
−1.7
|
SNORD116
|
−1.6
|
PRKACB
|
−1.5
|
||
ZNF141
|
−1.7
|
GPR171
|
−1.6
|
ALG10B
|
−1.5
|
||
TRBC1
|
−1.7
|
MGC40069
|
−1.6
|
NBPF10
|
−1.5
|
||
FAM69A
|
−1.7
|
LOC439949
|
−1.6
|
MGAT4A
|
−1.5
|
||
C1GALT1
|
−1.7
|
CCR7
|
−1.6
|
INPP4B
|
−1.5
|
||
GIMAP5
|
−1.7
|
NUP43
|
−1.6
|
STAT4
|
−1.5
|