Skip to main content
Erschienen in: Archives of Virology 6/2018

02.03.2018 | Original Article

A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain

verfasst von: Jeremie Williams, Karthikeya Venkatesan, Joseph Atia Ayariga, Doba Jackson, Hongzhuan Wu, Robert Villafane

Erschienen in: Archives of Virology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

P22 bacteriophage has been studied extensively and has served as a model for many important processes such as in vivo protein folding, protein aggregation and protein-protein interactions. The trimeric tailspike protein (TSP) serves as the receptor-binding protein for the P22 bacteriophage to the bacterial host. The homotrimeric P22 tail consists of three chains of 666aa in which the first 108aa form a trimeric dome-like structure which is called the N-terminal domain (NTD) and is responsible for attachment of the tailspike protein to the rest of the phage particle structure in the phage assembly pathway. Knowledge of this interaction requires information on what amino acids are interacting in the interface and how the NTD structure is maintained. The first 23aa form the “stem peptide” which originates at the dome top and terminates at the dome bottom. It contains a hydrophobic valine patch (V8-V9-V10) located within the dome structure. It is hypothesized that the interaction between the hydrophobic valine patch located on stem peptide and the adjacent polypeptide is critical for the interchain interaction which should be important for the stability of the P22 TSP NTD itself. To test this hypothesis, each amino acid in the valine residues is substituted by an acid, a basic, and a hydrophobic amino acid. The results of such substitutions are presented as well as associated studies. The data strongly suggest that the valine patch is of critical importance in the hydrophobic interaction between stem peptide valine patch and an adjacent chain.
Literatur
1.
Zurück zum Zitat Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191CrossRefPubMed Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–191CrossRefPubMed
2.
Zurück zum Zitat Prevelige Jr PE (2006) Bacteriophage P22. In: Calendar R (ed) The bacteriophages. Oxford Press, New York, pp. 457–468 Prevelige Jr PE (2006) Bacteriophage P22. In: Calendar R (ed) The bacteriophages. Oxford Press, New York, pp. 457–468
3.
Zurück zum Zitat Switt AIM, Sulakvelidze A, Weidmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y (2015) Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 1225:237–287CrossRefPubMed Switt AIM, Sulakvelidze A, Weidmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y (2015) Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 1225:237–287CrossRefPubMed
5.
Zurück zum Zitat Domitrovic T, Movahed N, Bothner B, Matsui T, Wang Q, Doerschuk P, Johnson J (2013) Virus assembly and maturation: auto-regulation through allosteric molecular switches. J Mol Biol 425:1488–1496CrossRefPubMedPubMedCentral Domitrovic T, Movahed N, Bothner B, Matsui T, Wang Q, Doerschuk P, Johnson J (2013) Virus assembly and maturation: auto-regulation through allosteric molecular switches. J Mol Biol 425:1488–1496CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Sauer RT, Krovatin W, Poteete AR, Berget PB (1982) Phage P22 tail protein: gene and amino acid sequence. Biochemistry 21:5811–5815CrossRefPubMed Sauer RT, Krovatin W, Poteete AR, Berget PB (1982) Phage P22 tail protein: gene and amino acid sequence. Biochemistry 21:5811–5815CrossRefPubMed
7.
Zurück zum Zitat Seul A, Muller JJ, Andres D, Stettner E, Heinemann U, Seckler R (2014) Bacteriophage P22 tailspike: structure of the complete protein and the function of interdomain linker. Acta Cryst 70:1336–1345 Seul A, Muller JJ, Andres D, Stettner E, Heinemann U, Seckler R (2014) Bacteriophage P22 tailspike: structure of the complete protein and the function of interdomain linker. Acta Cryst 70:1336–1345
9.
Zurück zum Zitat Goldenberg D, Berget P, King J (1982) Maturation of the tail spike endorhamnosidase of Salmonella Phage P22. J Biol Chem 257:7864–7871PubMed Goldenberg D, Berget P, King J (1982) Maturation of the tail spike endorhamnosidase of Salmonella Phage P22. J Biol Chem 257:7864–7871PubMed
10.
Zurück zum Zitat Poteete AR (1988) The Bacteriophage P22. In: Calendar R (ed) The Bacteriophages. Plenum Press, New York, pp 647–682CrossRef Poteete AR (1988) The Bacteriophage P22. In: Calendar R (ed) The Bacteriophages. Plenum Press, New York, pp 647–682CrossRef
11.
Zurück zum Zitat Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265:383–386CrossRefPubMed Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265:383–386CrossRefPubMed
12.
Zurück zum Zitat Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R (1997) Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Ǻ, fully refined structure of the endorhamnosidase at 1.56 Ǻ resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 267:865–880CrossRefPubMed Steinbacher S, Miller S, Baxa U, Budisa N, Weintraub A, Seckler R, Huber R (1997) Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Ǻ, fully refined structure of the endorhamnosidase at 1.56 Ǻ resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol 267:865–880CrossRefPubMed
13.
Zurück zum Zitat Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R, Seckler R (1996) Interactions of phage P22 tails with their cellular receptors. Salmonella o-Antigen Polysacch Biophys J 71:2040–2048 Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R, Seckler R (1996) Interactions of phage P22 tails with their cellular receptors. Salmonella o-Antigen Polysacch Biophys J 71:2040–2048
14.
Zurück zum Zitat Palmer C, Williams J, Dean D, Johnson S, Wu H, Jackson D, Villafane R (2014) Stem mutants in the N-terminal domain of the phage P22 tailspike protein. Am J Microbiol Res 2:1–7CrossRef Palmer C, Williams J, Dean D, Johnson S, Wu H, Jackson D, Villafane R (2014) Stem mutants in the N-terminal domain of the phage P22 tailspike protein. Am J Microbiol Res 2:1–7CrossRef
15.
Zurück zum Zitat Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244CrossRefPubMed Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244CrossRefPubMed
16.
Zurück zum Zitat Villafane R, Costa S, Ahmed R, Salgado C (2005) Conservation of the N-terminus of some phage tail proteins. Arch Virol 150:2609–2621CrossRefPubMed Villafane R, Costa S, Ahmed R, Salgado C (2005) Conservation of the N-terminus of some phage tail proteins. Arch Virol 150:2609–2621CrossRefPubMed
17.
Zurück zum Zitat Salgado CJ, Zayas M, Villafane R (2004) Homology between two different Salmonella phages: Salmonella enterica serovar Typhimurium phage P22 and Salmonella enterica serovar Anatum var. 15+phage ε34. Virus Genes 29:87–98CrossRefPubMed Salgado CJ, Zayas M, Villafane R (2004) Homology between two different Salmonella phages: Salmonella enterica serovar Typhimurium phage P22 and Salmonella enterica serovar Anatum var. 15+phage ε34. Virus Genes 29:87–98CrossRefPubMed
18.
Zurück zum Zitat Mateu MG (2009) The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. FEBS J 276:6098–6109CrossRefPubMed Mateu MG (2009) The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. FEBS J 276:6098–6109CrossRefPubMed
19.
Zurück zum Zitat Finzi D, Dieffenbach CW, Basavappa R (2007) Defining and solving the essential protein–protein interactions in HIV infections. J Struct Biol 158:148–155CrossRefPubMed Finzi D, Dieffenbach CW, Basavappa R (2007) Defining and solving the essential protein–protein interactions in HIV infections. J Struct Biol 158:148–155CrossRefPubMed
20.
Zurück zum Zitat Wang W-H, Chang L-K, Liu S-T (2011) Molecular interactions of Epstein-Barr capsid proteins. J Virol 85:1618–1624 Wang W-H, Chang L-K, Liu S-T (2011) Molecular interactions of Epstein-Barr capsid proteins. J Virol 85:1618–1624
21.
Zurück zum Zitat Robinson A, King J (1997) Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Mol Biol 4:450–455CrossRef Robinson A, King J (1997) Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Mol Biol 4:450–455CrossRef
22.
Zurück zum Zitat Kamei DT, Liu C, Haase-Pettingell C, King JA, Wang DIC, Blandkschtein D (2002) Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Role of attractive interactions between viruses and micelles. Biotech Bioeng 78:190–202CrossRef Kamei DT, Liu C, Haase-Pettingell C, King JA, Wang DIC, Blandkschtein D (2002) Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Role of attractive interactions between viruses and micelles. Biotech Bioeng 78:190–202CrossRef
23.
Zurück zum Zitat Schwarz J, Berget P (1989) The isolation and sequence of missense and nonsense mutations in the cloned bacteriophage P22 tailspike protein gene. Genetics 121:635–649PubMedPubMedCentral Schwarz J, Berget P (1989) The isolation and sequence of missense and nonsense mutations in the cloned bacteriophage P22 tailspike protein gene. Genetics 121:635–649PubMedPubMedCentral
24.
Zurück zum Zitat Betts S, Speed M, King J (1999) Detection of early aggregation intermediates by native gel electrophoresis and native western blotting. Methods Enzymol 309:333–350CrossRefPubMed Betts S, Speed M, King J (1999) Detection of early aggregation intermediates by native gel electrophoresis and native western blotting. Methods Enzymol 309:333–350CrossRefPubMed
25.
Zurück zum Zitat Roskams J, Rodgers L (2002) Electrophoretic separation of proteins and nucleic acids. In: Roskams J, Rodgers L (eds) Lab Ref: A handbook of recipes, reagents, and other reference tools for use at the bench. Cold Spring Harbor Press, New York, pp 63–91 Roskams J, Rodgers L (2002) Electrophoretic separation of proteins and nucleic acids. In: Roskams J, Rodgers L (eds) Lab Ref: A handbook of recipes, reagents, and other reference tools for use at the bench. Cold Spring Harbor Press, New York, pp 63–91
26.
Zurück zum Zitat Maurides PA, Schwarz JJ, Berget PB (1990) Intragenic suppression of a capsid assembly-defective P22 tailspike mutation. Genetics 125:673–681PubMedPubMedCentral Maurides PA, Schwarz JJ, Berget PB (1990) Intragenic suppression of a capsid assembly-defective P22 tailspike mutation. Genetics 125:673–681PubMedPubMedCentral
27.
Zurück zum Zitat Chen B, King J (1991) Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry 30:6260–6269CrossRefPubMed Chen B, King J (1991) Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry 30:6260–6269CrossRefPubMed
28.
Zurück zum Zitat Sturtevant J, Yu M, Haase-Pettingell C, King J (1989) Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem 264:10693–10698PubMed Sturtevant J, Yu M, Haase-Pettingell C, King J (1989) Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem 264:10693–10698PubMed
30.
Zurück zum Zitat Kessel A, Ben-Tal N (2011) Introduction to proteins, 1st edn. CRC Press, Boca Raton, pp 44–58 Kessel A, Ben-Tal N (2011) Introduction to proteins, 1st edn. CRC Press, Boca Raton, pp 44–58
31.
Zurück zum Zitat Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244CrossRefPubMed Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244CrossRefPubMed
32.
Zurück zum Zitat Prevost M, Wodak S, Tidor B, Karplus M (1991) Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96—Ala mutation in barnase. PNAS 88:10880–10884CrossRefPubMedPubMedCentral Prevost M, Wodak S, Tidor B, Karplus M (1991) Contribution of the hydrophobic effect to protein stability: analysis based on simulations of the Ile-96—Ala mutation in barnase. PNAS 88:10880–10884CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Manning M, Colón W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 43:11248–11254CrossRefPubMed Manning M, Colón W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 43:11248–11254CrossRefPubMed
34.
Zurück zum Zitat Xia K, Zhang S, Bathrick B, Liu S, Garcia Y, Colón W (2012) Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping. Biochemistry 51:100–107CrossRefPubMed Xia K, Zhang S, Bathrick B, Liu S, Garcia Y, Colón W (2012) Quantifying the kinetic stability of hyperstable proteins via time-dependent SDS trapping. Biochemistry 51:100–107CrossRefPubMed
35.
Zurück zum Zitat Freiberg A, Morona R, Van Den Bosch L, Jung C, Behlke J, Carlin N, Seckler R, Baxa U (2002) The Tailspike Protein of STIgella Phage Sf6: a structural homolog of salmonella phage p22 tailspike protein without sequence similarity in the β-helix domain. J Biol Chem 278(3):1542–1548CrossRefPubMed Freiberg A, Morona R, Van Den Bosch L, Jung C, Behlke J, Carlin N, Seckler R, Baxa U (2002) The Tailspike Protein of STIgella Phage Sf6: a structural homolog of salmonella phage p22 tailspike protein without sequence similarity in the β-helix domain. J Biol Chem 278(3):1542–1548CrossRefPubMed
36.
Zurück zum Zitat Wen J, Arthur K, Chemmalil L, Muzammil S, Gabrielson J, Jiang Y (2012) Applications of can differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J Pharmaceut Sci 101:955–964CrossRef Wen J, Arthur K, Chemmalil L, Muzammil S, Gabrielson J, Jiang Y (2012) Applications of can differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J Pharmaceut Sci 101:955–964CrossRef
Metadaten
Titel
A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain
verfasst von
Jeremie Williams
Karthikeya Venkatesan
Joseph Atia Ayariga
Doba Jackson
Hongzhuan Wu
Robert Villafane
Publikationsdatum
02.03.2018
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 6/2018
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-018-3777-y

Weitere Artikel der Ausgabe 6/2018

Archives of Virology 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.