Skip to main content
Erschienen in: Annals of Nuclear Medicine 1/2013

01.01.2013 | Technical note

A heuristic statistical stopping rule for iterative reconstruction in emission tomography

verfasst von: F. Ben Bouallègue, J. F. Crouzet, D. Mariano-Goulart

Erschienen in: Annals of Nuclear Medicine | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Objective

We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process.

Methods

The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels.

Results

The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image.

Conclusions

Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.
Literatur
1.
Zurück zum Zitat Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol. 1970;29:471–81.PubMedCrossRef Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol. 1970;29:471–81.PubMedCrossRef
2.
Zurück zum Zitat Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.PubMedCrossRef Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.PubMedCrossRef
3.
Zurück zum Zitat Goitein M. Three-dimensional density reconstruction from a series of twodimensional projections. Nucl Instrum Methods. 1972;101:509–18.CrossRef Goitein M. Three-dimensional density reconstruction from a series of twodimensional projections. Nucl Instrum Methods. 1972;101:509–18.CrossRef
4.
Zurück zum Zitat Gilbert PFC. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.PubMedCrossRef Gilbert PFC. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.PubMedCrossRef
5.
Zurück zum Zitat Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys. 1993;20:1675–84.PubMedCrossRef Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys. 1993;20:1675–84.PubMedCrossRef
6.
Zurück zum Zitat Schmidlin P. Iterative separation of sections in tomographic scintigrams. Nucl Med. 1972;11(1):1–16. Schmidlin P. Iterative separation of sections in tomographic scintigrams. Nucl Med. 1972;11(1):1–16.
7.
Zurück zum Zitat Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Stat. 1972;43:1470–80.CrossRef Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Stat. 1972;43:1470–80.CrossRef
8.
Zurück zum Zitat Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39:1–38. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39:1–38.
9.
Zurück zum Zitat Barrett HH, Swindell W. Radiological imaging—the theory of image formation, detection, and processing. New York: Academic Press; 1981. Barrett HH, Swindell W. Radiological imaging—the theory of image formation, detection, and processing. New York: Academic Press; 1981.
10.
Zurück zum Zitat Shepp VA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.PubMedCrossRef Shepp VA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.PubMedCrossRef
11.
Zurück zum Zitat Byrne CL. Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc. 1996;5:792–4.CrossRef Byrne CL. Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc. 1996;5:792–4.CrossRef
12.
Zurück zum Zitat Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Proc. 1998;7:100–9.CrossRef Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Proc. 1998;7:100–9.CrossRef
13.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef
14.
Zurück zum Zitat Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.PubMedCrossRef Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.PubMedCrossRef
15.
Zurück zum Zitat Mesina CT, Boellaard R, Jongbloed G, Van der Vaart AW, Lammertsma AA. Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage. 2003;19:1170–9.PubMedCrossRef Mesina CT, Boellaard R, Jongbloed G, Van der Vaart AW, Lammertsma AA. Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage. 2003;19:1170–9.PubMedCrossRef
16.
Zurück zum Zitat Lubberink M, Boellaard R, Van der Weerdt AP, Visser AC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med. 2004;45:2008–15.PubMed Lubberink M, Boellaard R, Van der Weerdt AP, Visser AC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med. 2004;45:2008–15.PubMed
17.
Zurück zum Zitat Razifar P, Lubberink M, Schneider H, Lâgström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5(1):3.PubMedCrossRef Razifar P, Lubberink M, Schneider H, Lâgström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5(1):3.PubMedCrossRef
18.
Zurück zum Zitat Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys Med Biol. 1993;38:1713–27.PubMedCrossRef Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys Med Biol. 1993;38:1713–27.PubMedCrossRef
19.
Zurück zum Zitat Mariano-Goulart D, Fourcade M, Bernon JL, Rossi M, Zanca M. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm. Comput Med Imaging Graph. 2003;27:53–63.PubMedCrossRef Mariano-Goulart D, Fourcade M, Bernon JL, Rossi M, Zanca M. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm. Comput Med Imaging Graph. 2003;27:53–63.PubMedCrossRef
20.
Zurück zum Zitat Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys Med Biol. 1990;35:1221–32.CrossRef Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys Med Biol. 1990;35:1221–32.CrossRef
21.
Zurück zum Zitat Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6:228–38.PubMedCrossRef Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6:228–38.PubMedCrossRef
22.
Zurück zum Zitat Falcon C, Juvells I, Pavia J, Ros D. Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol. 1998;43:1271–85.PubMedCrossRef Falcon C, Juvells I, Pavia J, Ros D. Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol. 1998;43:1271–85.PubMedCrossRef
23.
Zurück zum Zitat Liang Z, Jaszczak R, Greer K. On Bayesian image reconstruction from projections: uniform and nonuniform a priori source information. IEEE Trans Med Imaging. 1989;8:227–35.PubMedCrossRef Liang Z, Jaszczak R, Greer K. On Bayesian image reconstruction from projections: uniform and nonuniform a priori source information. IEEE Trans Med Imaging. 1989;8:227–35.PubMedCrossRef
24.
Zurück zum Zitat Fessler JA, Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans Image Proc. 1995;4:1417–29.CrossRef Fessler JA, Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans Image Proc. 1995;4:1417–29.CrossRef
25.
Zurück zum Zitat Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405–22.PubMedCrossRef Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405–22.PubMedCrossRef
26.
Zurück zum Zitat Slijpen ETP, Beekman FJ. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci. 1999;46:2233–8.CrossRef Slijpen ETP, Beekman FJ. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci. 1999;46:2233–8.CrossRef
27.
Zurück zum Zitat Knuth DE. Seminumerical algorithms. The art of computer programming, vol 2. Boston: Addison Wesley; 1969. Knuth DE. Seminumerical algorithms. The art of computer programming, vol 2. Boston: Addison Wesley; 1969.
28.
Zurück zum Zitat Jan S et al. for the OpenGATE collaboration, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.PubMedCrossRef Jan S et al. for the OpenGATE collaboration, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.PubMedCrossRef
29.
Zurück zum Zitat Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol. 2006;51:943–62.PubMedCrossRef Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol. 2006;51:943–62.PubMedCrossRef
30.
Zurück zum Zitat Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.PubMedCrossRef Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.PubMedCrossRef
31.
Zurück zum Zitat Kadrmas DJ. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol. 2004;49:4731–44.PubMedCrossRef Kadrmas DJ. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol. 2004;49:4731–44.PubMedCrossRef
Metadaten
Titel
A heuristic statistical stopping rule for iterative reconstruction in emission tomography
verfasst von
F. Ben Bouallègue
J. F. Crouzet
D. Mariano-Goulart
Publikationsdatum
01.01.2013
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 1/2013
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-012-0657-5

Weitere Artikel der Ausgabe 1/2013

Annals of Nuclear Medicine 1/2013 Zur Ausgabe