Skip to main content
Erschienen in: Tumor Biology 12/2016

04.10.2016 | Original Article

A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase

verfasst von: Chen Chen, Hui Liang, Xinmei Liao, Jian Pan, Jianhe Chen, Shibi Zhao, Yan Xu, Yun Wu, Jian Ni

Erschienen in: Tumor Biology | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

Inhibition of tumor vasculature is an effective strategy for cancer therapy. Angiostatin could suppress tumor growth and metastasis by binding and inhibiting F1F0 ATP synthase on the endothelial cell surface. We previously screened a monoclonal antibody (McAb, McAb178-5G10), which specifically bound to ATPase on the surface of cells and showed an angiostatin-like activity. Here, we further generated a panel of CHO-mAb subclone stable expressing a humanized chimeric antibody from hybridoma cell McAb178-5G10 by gene engineer. And then, we successfully expressed the humanized antibody Hai178 at high level in a 5-L wave bioreactor. The vitro results showed that Hai178 retained the specific binding and antitumor activity of murine antibody. Furthermore, Hai178 also had a tumor therapeutic effect in tumor xenografts. These results paved the way for Hai178 as a therapeutic antibody in clinic.
Literatur
1.
Zurück zum Zitat Burwick NR. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem. 2004;280:1740–5.CrossRefPubMedPubMedCentral Burwick NR. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J Biol Chem. 2004;280:1740–5.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Ma Z, Cao M, Liu Y, He Y, Wang Y, Yang C, et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta. Biochim Biophys. 2010;42:530–7. Ma Z, Cao M, Liu Y, He Y, Wang Y, Yang C, et al. Mitochondrial F1Fo-ATP synthase translocates to cell surface in hepatocytes and has high activity in tumor-like acidic and hypoxic environment. Acta. Biochim Biophys. 2010;42:530–7.
3.
Zurück zum Zitat Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol. 2006;17:279–84.CrossRefPubMed Champagne E, Martinez LO, Collet X, Barbaras R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Curr Opin Lipidol. 2006;17:279–84.CrossRefPubMed
4.
Zurück zum Zitat Moser L, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedPubMedCentral Moser L, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A. 2001;98:6656–61.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Yuan J, Zhang C, Fang S, Zhuang Z, Ling S, Wang SA. Monoclonal antibody against F1-F0 atp synthase beta subunit. Hybridoma. 2012;31:352–7.CrossRefPubMed Yuan J, Zhang C, Fang S, Zhuang Z, Ling S, Wang SA. Monoclonal antibody against F1-F0 atp synthase beta subunit. Hybridoma. 2012;31:352–7.CrossRefPubMed
6.
Zurück zum Zitat Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res. 2015;5:1558–70.PubMedPubMedCentral Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, et al. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res. 2015;5:1558–70.PubMedPubMedCentral
7.
Zurück zum Zitat Zhang X, Gao F, LL Y, Peng Y, Liu HH, Liu JY, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin. 2008;29:942–50.CrossRefPubMed Zhang X, Gao F, LL Y, Peng Y, Liu HH, Liu JY, et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin. 2008;29:942–50.CrossRefPubMed
8.
Zurück zum Zitat Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor recognition following vgamma 9vdelta2 t cell receptor interactions with a surface F1-atpase-related structure and apolipoprotein a-i. Immunity. 2005;22:71–80.CrossRefPubMed Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M, et al. Tumor recognition following vgamma 9vdelta2 t cell receptor interactions with a surface F1-atpase-related structure and apolipoprotein a-i. Immunity. 2005;22:71–80.CrossRefPubMed
9.
Zurück zum Zitat Deshpande M, Notari L, Subramanian P, Notario V, Becerra SP. Inhibition of tumor cell surface atp synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219–27.PubMedPubMedCentral Deshpande M, Notari L, Subramanian P, Notario V, Becerra SP. Inhibition of tumor cell surface atp synthesis by pigment epithelium-derived factor: implications for antitumor activity. Int J Oncol. 2012;41:219–27.PubMedPubMedCentral
10.
Zurück zum Zitat Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular ph: a mechanism dependent on cell surface-associated atp synthase. Cancer Res. 2006;66:875–82.CrossRefPubMed Chi SL, Pizzo SV. Angiostatin is directly cytotoxic to tumor cells at low extracellular ph: a mechanism dependent on cell surface-associated atp synthase. Cancer Res. 2006;66:875–82.CrossRefPubMed
11.
Zurück zum Zitat Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, et al. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res. 2007;67:4716–24.CrossRefPubMed Chi SL, Wahl ML, Mowery YM, Shan S, Mukhopadhyay S, Hilderbrand SC, et al. Angiostatin-like activity of a monoclonal antibody to the catalytic subunit of F1F0 ATP synthase. Cancer Res. 2007;67:4716–24.CrossRefPubMed
12.
Zurück zum Zitat Moser TL, Stack SM, Asplin I, Enghild JJ, Højrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96:2811–6.CrossRefPubMedPubMedCentral Moser TL, Stack SM, Asplin I, Enghild JJ, Højrup P, Everitt L, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A. 1999;96:2811–6.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Mowery YM, Pizzo SV. Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther. 2008;7:1836–8.CrossRefPubMed Mowery YM, Pizzo SV. Targeting cell surface F1F0 ATP synthase in cancer therapy. Cancer Biol Ther. 2008;7:1836–8.CrossRefPubMed
14.
Zurück zum Zitat Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem. 2015;290:6338–43.CrossRefPubMedPubMedCentral Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem. 2015;290:6338–43.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med. 2011;(9):211. Pan J, Sun LC, Tao YF, Zhou Z, Du XL, Peng L, et al. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer. J Transl Med. 2011;(9):211.
16.
Zurück zum Zitat Wang J, Han Y, Liang J, Cheng X, Yan L, Wang Y, et al. Effect of a novel inhibitory mAb against β-subunit of F1F0 ATPase on HCC. Cancer Biol Ther. 2008;7:1829–35.CrossRefPubMed Wang J, Han Y, Liang J, Cheng X, Yan L, Wang Y, et al. Effect of a novel inhibitory mAb against β-subunit of F1F0 ATPase on HCC. Cancer Biol Ther. 2008;7:1829–35.CrossRefPubMed
17.
Zurück zum Zitat Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, et al. A monoclonal antibody (Mc178-ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med. 2012;12:3–12.CrossRefPubMed Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, et al. A monoclonal antibody (Mc178-ab) targeted to the ecto-ATP synthase beta-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med. 2012;12:3–12.CrossRefPubMed
18.
Zurück zum Zitat Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem. 2013;114:1695–703.CrossRefPubMed Wang WJ, Shi XX, Liu YW, He YQ, Wang YZ, Yang CX, et al. The mechanism underlying the effects of the cell surface ATP synthase on the regulation of intracellular acidification during acidosis. J Cell Biochem. 2013;114:1695–703.CrossRefPubMed
19.
Zurück zum Zitat Zhao WL, Wang J, Tao YF, Feng X, Li YH, Zhu XM, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:31–92.CrossRefPubMedPubMedCentral Zhao WL, Wang J, Tao YF, Feng X, Li YH, Zhu XM, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:31–92.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res. 2009;15:1585–92.CrossRefPubMedPubMedCentral Benavente S, Huang S, Armstrong EA, Chi A, Hsu KT, Wheeler DL, et al. Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res. 2009;15:1585–92.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NCA. Study of monoclonal antibody-producing cho cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.CrossRefPubMed Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NCA. Study of monoclonal antibody-producing cho cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102:1182–96.CrossRefPubMed
22.
Zurück zum Zitat Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng. 2008;99:578–87.CrossRefPubMed Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng. 2008;99:578–87.CrossRefPubMed
23.
Zurück zum Zitat Tabuchi H, Sugiyama T, Tanaka S, Tainaka S. Overexpression of taurine transporter in chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng. 2010;107:998–1003.CrossRefPubMed Tabuchi H, Sugiyama T, Tanaka S, Tainaka S. Overexpression of taurine transporter in chinese hamster ovary cells can enhance cell viability and product yield, while promoting glutamine consumption. Biotechnol Bioeng. 2010;107:998–1003.CrossRefPubMed
24.
Zurück zum Zitat Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding egfr single-chain fv antibody fragment for the targeted cancer therapy. J Control Release. 2015;209:101–9.CrossRefPubMed Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, et al. A collagen-binding egfr single-chain fv antibody fragment for the targeted cancer therapy. J Control Release. 2015;209:101–9.CrossRefPubMed
25.
Zurück zum Zitat Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
26.
Zurück zum Zitat Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, et al. Vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol. 2006;57:709–18.CrossRefPubMed Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, et al. Vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of egfr. Cancer Chemother Pharmacol. 2006;57:709–18.CrossRefPubMed
27.
Zurück zum Zitat De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/her3 signalling. Gut. 2013;62:550–60.CrossRefPubMed De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/her3 signalling. Gut. 2013;62:550–60.CrossRefPubMed
28.
Zurück zum Zitat Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of dapit (diabetes-associated protein in insulin-sensitive tissue) results in loss of atp synthase in mitochondria. J Biol Chem. 2011;286:20292–6.CrossRefPubMedPubMedCentral Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of dapit (diabetes-associated protein in insulin-sensitive tissue) results in loss of atp synthase in mitochondria. J Biol Chem. 2011;286:20292–6.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J. Cell Sci. J Cell Sci. 2010;123:2685–96.CrossRefPubMed Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J. Cell Sci. J Cell Sci. 2010;123:2685–96.CrossRefPubMed
30.
Zurück zum Zitat Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.CrossRefPubMed Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27:331–7.CrossRefPubMed
31.
Zurück zum Zitat Calvo B, Zuñiga L. Therapeutic monoclonal antibodies: strategies and challenges for biosimilarsdevelopment. Curr Med Chem. 2012;2012:4445–50.CrossRef Calvo B, Zuñiga L. Therapeutic monoclonal antibodies: strategies and challenges for biosimilarsdevelopment. Curr Med Chem. 2012;2012:4445–50.CrossRef
32.
Zurück zum Zitat Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.CrossRefPubMed Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.CrossRefPubMed
33.
Metadaten
Titel
A humanized chimeric antibody Hai178 targeted to the β subunit of F1F0 ATP synthase
verfasst von
Chen Chen
Hui Liang
Xinmei Liao
Jian Pan
Jianhe Chen
Shibi Zhao
Yan Xu
Yun Wu
Jian Ni
Publikationsdatum
04.10.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5423-1

Weitere Artikel der Ausgabe 12/2016

Tumor Biology 12/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.