Skip to main content
Erschienen in:

13.08.2024 | Computed Tomography

A machine learning-based pipeline for multi-organ/tissue patient-specific radiation dosimetry in CT

verfasst von: Eleftherios Tzanis, John Damilakis

Erschienen in: European Radiology | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop a machine learning-based pipeline for multi-organ/tissue personalized radiation dosimetry in CT.

Materials and methods

For the study, 95 chest CT scans and 85 abdominal CT scans were collected retrospectively. For each CT scan, a personalized Monte Carlo (MC) simulation was carried out. The produced 3D dose distributions and the respective CT examinations were utilized for the development of organ/tissue-specific dose prediction deep neural networks (DNNs). A pipeline that integrates a robust open-source organ segmentation tool with the dose prediction DNNs was developed for the automatic estimation of radiation doses for 30 organs/tissues including sub-volumes of the heart and lungs. The accuracy and time efficiency of the presented methodology was assessed. Statistical analysis (t-tests) was conducted to determine if the differences between the ground truth organ/tissue radiation dose estimates and the respective dose predictions were significant.

Results

The lowest median percentage differences between MC-derived organ/tissue doses and DNN dose predictions were observed for the lung vessels (4.3%), small bowel (4.7%), pulmonary artery (4.7%), and colon (5.2%), while the highest differences were observed for the right lung’s upper lobe (13.3%), spleen (13.1%), pancreas (12.1%), and stomach (11.6%). Statistical analysis showed that the differences were not significant (p-value > 0.18). Furthermore, the mean inference time, regarding the validation cohort, of the developed methodology was 77.0 ± 11.0 s.

Conclusion

The proposed workflow enables fast and accurate organ/tissue radiation dose estimations. The developed algorithms and dose prediction DNNs are publicly available (https://​github.​com/​eltzanis/​multi-structure-CT-dosimetry).

Clinical relevance statement

The accuracy and time efficiency of the developed pipeline compose a useful tool for personalized dosimetry in CT. By adopting the proposed workflow, institutions can utilize an automated pipeline for patient-specific dosimetry in CT.

Key Points

  • Personalized dosimetry is ideal, but is time-consuming.
  • The proposed pipeline composes a tool for facilitating patient-specific CT dosimetry in routine clinical practice.
  • The developed workflow integrates a robust open-source segmentation tool with organ/tissue-specific dose prediction neural networks.

Graphical Abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
20.
Zurück zum Zitat McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep 2014:6–23PubMedPubMedCentral McCollough C, Bakalyar DM, Bostani M et al (2014) Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep 2014:6–23PubMedPubMedCentral
27.
Zurück zum Zitat European Commission. Report on radiation protection N° 180 (2014) Medical radiation exposure of the European population, Part 1/2. European Commission, Brussels European Commission. Report on radiation protection N° 180 (2014) Medical radiation exposure of the European population, Part 1/2. European Commission, Brussels
Metadaten
Titel
A machine learning-based pipeline for multi-organ/tissue patient-specific radiation dosimetry in CT
verfasst von
Eleftherios Tzanis
John Damilakis
Publikationsdatum
13.08.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2025
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-024-11002-0

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.