Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2019

13.10.2018 | Original Article

A machine learning pipeline for internal anatomical landmark embedding based on a patient surface model

verfasst von: Xia Zhong, Norbert Strobel, Annette Birkhold, Markus Kowarschik, Rebecca Fahrig, Andreas Maier

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

With the recent introduction of fully assisting scanner technologies by Siemens Healthineers (Erlangen, Germany), a patient surface model was introduced to the diagnostic imaging device market. Such a patient representation can be used to automate and accelerate the clinical imaging workflow, manage patient dose, and provide navigation assistance for computed tomography diagnostic imaging. In addition to diagnostic imaging, a patient surface model has also tremendous potential to simplify interventional imaging. For example, if the anatomy of a patient was known, a robotic angiography system could be automatically positioned such that the organ of interest is positioned in the system’s iso-center offering a good and flexible view on the underlying patient anatomy quickly and without any additional X-ray dose.

Method

To enable such functionality in a clinical context with sufficiently high accuracy, we present an extension of our previous patient surface model by adding internal anatomical landmarks associated with certain (main) bones of the human skeleton, in particular the spine. We also investigate different approaches to positioning of these landmarks employing CT datasets with annotated internal landmarks as training data. The general pipeline of our proposed method comprises the following steps: First, we train an active shape model using an existing avatar database and segmented CT surfaces. This stage also includes a gravity correction procedure, which accounts for shape changes due to the fact that the avatar models were obtained in standing position, while the CT data were acquired with patients in supine position. Second, we match the gravity-corrected avatar patient surface models to surfaces segmented from the CT datasets. In the last step, we derive the spatial relationships between the patient surface model and internal anatomical landmarks.

Result

We trained and evaluated our method using cross-validation using 20 datasets, each containing 50 internal landmarks. We further compared the performance of four different generalized linear models’ setups to describe the positioning of the internal landmarks relative to the patient surface. The best mean estimation error over all the landmarks was achieved using lasso regression with a mean error of \(12.19 \pm 6.98\ \hbox {mm}\).

Conclusion

Considering that interventional X-ray imaging systems can have detectors covering an area of about \(200\ \hbox {mm} \times 266\ \hbox {mm}\) (\(20\ \hbox {cm} \times 27\ \hbox {cm}\)) at iso-center, this accuracy is sufficient to facilitate automatic positioning of the X-ray system.
Literatur
1.
Zurück zum Zitat Allen B, Curless B, Popović Z (2003) The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans Graph 22:587–594CrossRef Allen B, Curless B, Popović Z (2003) The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans Graph 22:587–594CrossRef
2.
Zurück zum Zitat Anguelov D, Koller D, Pang HC, Srinivasan P, Thrun S (2004) Recovering articulated object models from 3D range data. In: Uncertainty in artificial intelligence, pp 18–26 Anguelov D, Koller D, Pang HC, Srinivasan P, Thrun S (2004) Recovering articulated object models from 3D range data. In: Uncertainty in artificial intelligence, pp 18–26
3.
Zurück zum Zitat Au OKC, Tai CL, Chu HK, Cohen-Or D, Lee TY (2008) Skeleton extraction by mesh contraction. In: ACM transactions on graphics (TOG), vol 27. ACM, p 44 Au OKC, Tai CL, Chu HK, Cohen-Or D, Lee TY (2008) Skeleton extraction by mesh contraction. In: ACM transactions on graphics (TOG), vol 27. ACM, p 44
4.
Zurück zum Zitat Bauer S, Wasza J, Haase S, Marosi N, Hornegger J (2011) Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor. In: Proceedings of IEEE International Conference on Computer Vision, pp 1175–1181 Bauer S, Wasza J, Haase S, Marosi N, Hornegger J (2011) Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor. In: Proceedings of IEEE International Conference on Computer Vision, pp 1175–1181
5.
Zurück zum Zitat Bednarek DR, Barbarits J, Rana VK, Nagaraja SP, Josan MS, Rudin S (2011) Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures. In: Medical imaging 2011: physics of medical imaging, vol 7961. International Society for Optics and Photonics, p 796127 Bednarek DR, Barbarits J, Rana VK, Nagaraja SP, Josan MS, Rudin S (2011) Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures. In: Medical imaging 2011: physics of medical imaging, vol 7961. International Society for Optics and Photonics, p 796127
6.
Zurück zum Zitat Bork F, Barmaki R, Eck U, Yu K, Sandor C, Navab N (2017) Empirical study of non-reversing magic mirrors for augmented reality anatomy learning. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 169–176 Bork F, Barmaki R, Eck U, Yu K, Sandor C, Navab N (2017) Empirical study of non-reversing magic mirrors for augmented reality anatomy learning. In: 2017 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 169–176
7.
Zurück zum Zitat Darom T, Keller Y (2012) Scale-invariant features for 3-D mesh models. IEEE Trans Image Process 21:2758–2769CrossRefPubMed Darom T, Keller Y (2012) Scale-invariant features for 3-D mesh models. IEEE Trans Image Process 21:2758–2769CrossRefPubMed
8.
Zurück zum Zitat Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395CrossRef Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395CrossRef
9.
Zurück zum Zitat Fletcher R (2013) Practical methods of optimization. Wiley, New York Fletcher R (2013) Practical methods of optimization. Wiley, New York
10.
Zurück zum Zitat Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67CrossRef Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67CrossRef
11.
Zurück zum Zitat Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE (2011) Skin dose mapping for fluoroscopically guided interventions. Med Phys 38(10):5490–5499CrossRefPubMedPubMedCentral Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE (2011) Skin dose mapping for fluoroscopically guided interventions. Med Phys 38(10):5490–5499CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Rausch J, Maier A, Fahrig R, Choi JH, Hinshaw W, Schebesch F, Haase S, Wasza J, Hornegger J, Riess C (2016) Kinect-based correction of overexposure artifacts in knee imaging with C-Arm CT systems. J Biomed Imaging 2016:1CrossRef Rausch J, Maier A, Fahrig R, Choi JH, Hinshaw W, Schebesch F, Haase S, Wasza J, Hornegger J, Riess C (2016) Kinect-based correction of overexposure artifacts in knee imaging with C-Arm CT systems. J Biomed Imaging 2016:1CrossRef
13.
Zurück zum Zitat Robinette K.M, Daanen H, Paquet E (1999) The CAESAR project: a 3-D surface anthropometry survey. In: Second international conference on 3-D digital imaging and modeling, 1999. Proceedings. IEEE, pp 380–386 Robinette K.M, Daanen H, Paquet E (1999) The CAESAR project: a 3-D surface anthropometry survey. In: Second international conference on 3-D digital imaging and modeling, 1999. Proceedings. IEEE, pp 380–386
14.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefPubMed Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefPubMed
15.
Zurück zum Zitat Sahillioğlu Y, Yemez Y (2012) Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans Pattern Anal Mach Intell 34(11):2203–2215CrossRefPubMed Sahillioğlu Y, Yemez Y (2012) Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans Pattern Anal Mach Intell 34(11):2203–2215CrossRefPubMed
16.
Zurück zum Zitat Singh V, Chang Y.j, Ma K, Wels M, Soza G, Chen T (2014) Estimating a patient surface model for optimizing the medical scanning workflow. In: Medical image computing and computer-assisted intervention, pp 472–479 Singh V, Chang Y.j, Ma K, Wels M, Soza G, Chen T (2014) Estimating a patient surface model for optimizing the medical scanning workflow. In: Medical image computing and computer-assisted intervention, pp 472–479
17.
Zurück zum Zitat Taubmann O, Wasza J, Forman C, Fischer P, Wetzl J, Maier A, Hornegger J (2014) Prediction of respiration-induced internal 3-D deformation fields from dense external 3-D surface motion. In: 28th transaction on computer assisted radiology and surgery (CARS), pp 33–34 Taubmann O, Wasza J, Forman C, Fischer P, Wetzl J, Maier A, Hornegger J (2014) Prediction of respiration-induced internal 3-D deformation fields from dense external 3-D surface motion. In: 28th transaction on computer assisted radiology and surgery (CARS), pp 33–34
18.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58:267–288 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58:267–288
19.
Zurück zum Zitat Jimenez-del Toro O, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475CrossRefPubMed Jimenez-del Toro O, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475CrossRefPubMed
20.
Zurück zum Zitat Wasza J, Fischer P, Leutheuser H, Oefner T, Bert C, Maier A, Hornegger J (2016) Real-time respiratory motion analysis using 4-D shape priors. IEEE Trans Biomed Eng 63(3):485–495CrossRefPubMed Wasza J, Fischer P, Leutheuser H, Oefner T, Bert C, Maier A, Hornegger J (2016) Real-time respiratory motion analysis using 4-D shape priors. IEEE Trans Biomed Eng 63(3):485–495CrossRefPubMed
21.
Zurück zum Zitat Zhong X, Strobel N, Sanders J, Kowarschik M, Fahrig R, Maier A (2017) Generation of personalized computational phantoms using only patient metadata. In: IEEE (ed) 2017 IEEE nuclear science symposium and medical imaging conference record (NSS/MIC) Zhong X, Strobel N, Sanders J, Kowarschik M, Fahrig R, Maier A (2017) Generation of personalized computational phantoms using only patient metadata. In: IEEE (ed) 2017 IEEE nuclear science symposium and medical imaging conference record (NSS/MIC)
22.
Zurück zum Zitat Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 67(2):301–320CrossRef Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 67(2):301–320CrossRef
Metadaten
Titel
A machine learning pipeline for internal anatomical landmark embedding based on a patient surface model
verfasst von
Xia Zhong
Norbert Strobel
Annette Birkhold
Markus Kowarschik
Rebecca Fahrig
Andreas Maier
Publikationsdatum
13.10.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1871-y

Weitere Artikel der Ausgabe 1/2019

International Journal of Computer Assisted Radiology and Surgery 1/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.