Skip to main content
Erschienen in: European Spine Journal 10/2017

07.08.2017 | Original Article

A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading

verfasst von: Kelly R. Wade, Meredith L. Schollum, Peter A. Robertson, Ashvin Thambyah, Neil D. Broom

Erschienen in: European Spine Journal | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To date, the mechanisms of disc failure have been explored at a microstructural level in relatively simple postures. However, in vivo the disc is known to be subjected to complex loading in compression, bending and shear, and the influence of these factors on the mechanisms of disc failure is yet to be described at a microstructural level. The purpose of this study was to provide a microstructural analysis of the mechanisms of failure in healthy discs subjected to compression while held in a complex posture incorporating physiological amounts of flexion and facet-constrained shear.

Methods

30 motion segments from 10 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object, and at a displacement rate of 40 mm/min. Nine of the 30 samples reached the predetermined displacement prior to a reduction in load and were classified as early-stage failures, providing insight into initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy.

Results

Complex postures significantly reduced the load required to cause disc failure than earlier described for flexed postures [8.42 kN (STD 1.22 kN) compared to 9.69 kN (STD 2.56 kN)] and resulted in a very different failure morphology to that observed in either simple flexion or direct compression, involving infiltration of nucleus material in a circuitous path to the annular periphery.

Conclusion

The complex posture as used in this study significantly reduced the load required to cause disc failure, providing further evidence that asymmetric postures while lifting should be avoided if possible.
Literatur
1.
Zurück zum Zitat Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Jt Surg Am 52:468–497CrossRef Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Jt Surg Am 52:468–497CrossRef
2.
Zurück zum Zitat Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628CrossRef Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628CrossRef
3.
Zurück zum Zitat Fathallah FA, Marras WS, Parnianpour M (1998) The role of complex, simultaneous trunk motions in the risk of occupation-related low back disorders. Spine 23(9):1035–1042CrossRefPubMed Fathallah FA, Marras WS, Parnianpour M (1998) The role of complex, simultaneous trunk motions in the risk of occupation-related low back disorders. Spine 23(9):1035–1042CrossRefPubMed
5.
Zurück zum Zitat Casaroli G, Villa T, Bassani T, Berger-Roscher N, Wilke HJ, Galbusera F (2017) Numerical prediction of the mechanical failure of the intervertebral disc under complex loading conditions. Materials. doi:10.3390/ma10010031 PubMedPubMedCentral Casaroli G, Villa T, Bassani T, Berger-Roscher N, Wilke HJ, Galbusera F (2017) Numerical prediction of the mechanical failure of the intervertebral disc under complex loading conditions. Materials. doi:10.​3390/​ma10010031 PubMedPubMedCentral
7.
Zurück zum Zitat Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39(13):1018–1028CrossRefPubMed Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39(13):1018–1028CrossRefPubMed
8.
Zurück zum Zitat Yoganandan N, Maiman DJ, Pintar F, Ray G, Myklebust JB, Sances A Jr, Larson SJ (1988) Microtrauma in the lumbar spine: a cause of low back pain. Neurosurgery 23(2):162–168CrossRefPubMed Yoganandan N, Maiman DJ, Pintar F, Ray G, Myklebust JB, Sances A Jr, Larson SJ (1988) Microtrauma in the lumbar spine: a cause of low back pain. Neurosurgery 23(2):162–168CrossRefPubMed
9.
Zurück zum Zitat Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Jt Surg Br 42-B(4):810–823 Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Jt Surg Br 42-B(4):810–823
10.
Zurück zum Zitat Lundin O, Ekström L, Hellström M, Holm S, Swärd L (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23(23):2574–2579CrossRefPubMed Lundin O, Ekström L, Hellström M, Holm S, Swärd L (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23(23):2574–2579CrossRefPubMed
11.
Zurück zum Zitat Adams MA (1995) Spine update: mechanical testing of the spine: an appraisal of methodology, results, and conclusions. Spine 20(19):2151–2156CrossRefPubMed Adams MA (1995) Spine update: mechanical testing of the spine: an appraisal of methodology, results, and conclusions. Spine 20(19):2151–2156CrossRefPubMed
12.
Zurück zum Zitat Adams MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191CrossRefPubMed Adams MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191CrossRefPubMed
13.
Zurück zum Zitat Wade KR, Robertson PA, Thambyah A, Broom ND (2015) ‘Surprise’ loading in flexion increases the risk of disc herniation due to annulus–endplate junction failure: a mechanical and microstructural investigation. Spine 40(12):891–901. doi:10.1097/BRS.0000000000000888 CrossRefPubMed Wade KR, Robertson PA, Thambyah A, Broom ND (2015) ‘Surprise’ loading in flexion increases the risk of disc herniation due to annulus–endplate junction failure: a mechanical and microstructural investigation. Spine 40(12):891–901. doi:10.​1097/​BRS.​0000000000000888​ CrossRefPubMed
14.
Zurück zum Zitat Wilke HJ, Kienle A, Maile S, Rasche V, Berger-Roscher N (2016) A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Eur Spine J 25(5):1363–1372. doi:10.1007/s00586-016-4416-5 CrossRefPubMed Wilke HJ, Kienle A, Maile S, Rasche V, Berger-Roscher N (2016) A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Eur Spine J 25(5):1363–1372. doi:10.​1007/​s00586-016-4416-5 CrossRefPubMed
17.
Zurück zum Zitat Veres SP, Robertson PA, Broom ND (2010) ISSLS prize winner: how loading rate influences disc failure mechanics: a microstructural assessment of internal disruption. Spine (Phila Pa 1976) 35(21):1897–1908. doi:10.1097/BRS.0b013e3181d9b69e CrossRef Veres SP, Robertson PA, Broom ND (2010) ISSLS prize winner: how loading rate influences disc failure mechanics: a microstructural assessment of internal disruption. Spine (Phila Pa 1976) 35(21):1897–1908. doi:10.​1097/​BRS.​0b013e3181d9b69e​ CrossRef
19.
Zurück zum Zitat Kelsey JL, Githens PB, White AA (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2(1):61–66CrossRefPubMed Kelsey JL, Githens PB, White AA (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2(1):61–66CrossRefPubMed
20.
Zurück zum Zitat Reid JE, Meakin JR, Robins SP, Skakle JMS, Hukins DWL (2002) Sheep lumbar intervertebral discs as models for human discs. Clin Biomech 17(4):312–314CrossRef Reid JE, Meakin JR, Robins SP, Skakle JMS, Hukins DWL (2002) Sheep lumbar intervertebral discs as models for human discs. Clin Biomech 17(4):312–314CrossRef
21.
22.
Zurück zum Zitat Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374CrossRefPubMed Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374CrossRefPubMed
23.
Zurück zum Zitat Race A, Broom ND, Robertson P (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25(6):662–669CrossRefPubMed Race A, Broom ND, Robertson P (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25(6):662–669CrossRefPubMed
24.
Zurück zum Zitat Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Jt Surg Ser A 60 A(1):41–55CrossRef Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Jt Surg Ser A 60 A(1):41–55CrossRef
26.
27.
Zurück zum Zitat van Heeswijk VM, Thambyah A, Robertson PA, Broom ND (2017) Posterolateral disc prolapse in flexion initiated by lateral inner annular failure: an investigation of the herniation pathway. Spine. doi:10.1097/BRS.0000000000002181 van Heeswijk VM, Thambyah A, Robertson PA, Broom ND (2017) Posterolateral disc prolapse in flexion initiated by lateral inner annular failure: an investigation of the herniation pathway. Spine. doi:10.​1097/​BRS.​0000000000002181​
28.
Zurück zum Zitat Schmidt H, Häußler K, Wilke HJ, Wolfram U (2015) Structural behavior of human lumbar intervertebral disc under direct shear. J Appl Biomater Funct Mater 13(1):66–71. doi:10.5301/jabfm.5000176 PubMed Schmidt H, Häußler K, Wilke HJ, Wolfram U (2015) Structural behavior of human lumbar intervertebral disc under direct shear. J Appl Biomater Funct Mater 13(1):66–71. doi:10.​5301/​jabfm.​5000176 PubMed
31.
Zurück zum Zitat Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. II. Ultimate tensile strength and fatigue life. Eur Spine J 2(4):209–214CrossRefPubMed Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. II. Ultimate tensile strength and fatigue life. Eur Spine J 2(4):209–214CrossRefPubMed
33.
Zurück zum Zitat Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multi-modal, prospective study of 181 subjects. Spine 38(17):1491–1500CrossRefPubMed Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multi-modal, prospective study of 181 subjects. Spine 38(17):1491–1500CrossRefPubMed
Metadaten
Titel
A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading
verfasst von
Kelly R. Wade
Meredith L. Schollum
Peter A. Robertson
Ashvin Thambyah
Neil D. Broom
Publikationsdatum
07.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Spine Journal / Ausgabe 10/2017
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-017-5252-y

Weitere Artikel der Ausgabe 10/2017

European Spine Journal 10/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.