Skip to main content
main-content

01.08.2011 | Original Paper | Ausgabe 4/2011

Journal of Medical Systems 4/2011

A New QRS Detection Method Using Wavelets and Artificial Neural Networks

Zeitschrift:
Journal of Medical Systems > Ausgabe 4/2011
Autoren:
Berdakh Abibullaev, Hee Don Seo

Abstract

We present a new method for detection and classification of QRS complexes in ECG signals using continuous wavelets and neural networks. Our wavelet method consists of four wavelet basis functions that are suitable in detection of QRS complexes within different QRS morphologies in the signal and thresholding technique for denoising and feature extraction. The results demonstrate that the proposed method is not only efficient for normal ECG signal analysis but also for various types of arrhythmic cardiac signals embedded in noise. For the classification stage, a feedforward neural network was trained with standard backpropagation algorithm. The classifier input features consisted of compact wavelet coefficients of QRS complexes that resulted in higher classification rates. We demonstrate the efficiency of our method with the average accuracy 97.2% in classification of normal and abnormal QRS complexes.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2011

Journal of Medical Systems 4/2011 Zur Ausgabe