Skip to main content
Erschienen in: Journal of Neurology 7/2017

15.06.2017 | Original Communication

A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns

verfasst von: Jillian P. Casey, Taisei Hirouchi, Chihiro Hisatsune, Bryan Lynch, Raymond Murphy, Aimee M. Dunne, Akitoshi Miyamoto, Sean Ennis, Nick van der Spek, Bronagh O’Hici, Katsuhiko Mikoshiba, Sally Ann Lynch

Erschienen in: Journal of Neurology | Ausgabe 7/2017

Einloggen, um Zugang zu erhalten

Abstract

We report three affected members, a mother and her two children, of a non-consanguineous Irish family who presented with a suspected autosomal dominant spinocerebellar ataxia characterized by early motor delay, poor coordination, gait ataxia, and dysarthria. Whole exome sequencing identified a novel missense variant (c.106C>T; p.[Arg36Cys]) in the suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor gene (ITPR1) as the cause of the disorder, resulting in a molecular diagnosis of spinocerebellar ataxia type 29. In the absence of grandparental DNA, microsatellite genotyping of healthy family members was used to confirm the de novo status of the ITPR1 variant in the affected mother, which supported pathogenicity. The Arg36Cys variant exhibited a significantly higher IP3-binding affinity than wild-type (WT) ITPR1 and drastically changed the property of the intracellular Ca2+ signal from a transient to a sigmoidal pattern, supporting a gain-of-function disease mechanism. To date, ITPR1 mutation has been associated with a loss-of-function effect, likely due to reduced Ca2+ release. This is the first gain-of-function mechanism to be associated with ITPR1-related SCA29, providing novel insights into how enhanced Ca2+ release can also contribute to the pathogenesis of this neurological disorder.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fogel BL, Lee H, Deignan JL et al (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246CrossRefPubMedPubMedCentral Fogel BL, Lee H, Deignan JL et al (2014) Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 71:1237–1246CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Ohba C, Osaka H, Iai M et al (2013) Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14:225–232CrossRefPubMed Ohba C, Osaka H, Iai M et al (2013) Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics 14:225–232CrossRefPubMed
3.
Zurück zum Zitat Huang L, Chardon JW, Carter MT et al (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67CrossRefPubMedPubMedCentral Huang L, Chardon JW, Carter MT et al (2012) Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 7:67CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Sasaki M, Ohba C, Iai M et al (2015) Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol 262:1278–1284CrossRefPubMed Sasaki M, Ohba C, Iai M et al (2015) Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. J Neurol 262:1278–1284CrossRefPubMed
5.
Zurück zum Zitat Barresi S, Niceta M, Alfieri P et al (2016) Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Clin Genet 91:86–91CrossRefPubMed Barresi S, Niceta M, Alfieri P et al (2016) Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. Clin Genet 91:86–91CrossRefPubMed
6.
Zurück zum Zitat van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108CrossRefPubMedPubMedCentral van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hara K, Shiga A, Nozaki H et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551CrossRefPubMed Hara K, Shiga A, Nozaki H et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551CrossRefPubMed
8.
Zurück zum Zitat Marelli C, van de Leemput J, Johnson JO et al (2011) SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643CrossRefPubMedPubMedCentral Marelli C, van de Leemput J, Johnson JO et al (2011) SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Novak MJ, Sweeney MG, Li A et al (2010) An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord 25:2176–2182CrossRefPubMed Novak MJ, Sweeney MG, Li A et al (2010) An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord 25:2176–2182CrossRefPubMed
10.
Zurück zum Zitat Iwaki A, Kawano Y, Miura S et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35CrossRefPubMed Iwaki A, Kawano Y, Miura S et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35CrossRefPubMed
11.
Zurück zum Zitat Di Gregorio E, Orsi L, Godani M et al (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum 9:115–123CrossRefPubMed Di Gregorio E, Orsi L, Godani M et al (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum 9:115–123CrossRefPubMed
12.
Zurück zum Zitat Obayashi M, Ishikawa K, Izumi Y et al (2012) Prevalence of inositol 1,4,5-triphosphate receptor type 1 gene deletion, the mutation for spinocerebellar ataxia type 15, in Japan screened by gene dosage. J Hum Genet 57:202–206CrossRefPubMed Obayashi M, Ishikawa K, Izumi Y et al (2012) Prevalence of inositol 1,4,5-triphosphate receptor type 1 gene deletion, the mutation for spinocerebellar ataxia type 15, in Japan screened by gene dosage. J Hum Genet 57:202–206CrossRefPubMed
13.
Zurück zum Zitat Gerber S, Alzayady KJ, Burglen L et al (2016) Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet 98:971–980CrossRefPubMedPubMedCentral Gerber S, Alzayady KJ, Burglen L et al (2016) Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. Am J Hum Genet 98:971–980CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat McEntagart M, Williamson KA, Rainger JK et al (2016) A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet 98:981–992CrossRefPubMedPubMedCentral McEntagart M, Williamson KA, Rainger JK et al (2016) A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. Am J Hum Genet 98:981–992CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446CrossRefPubMed Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446CrossRefPubMed
17.
Zurück zum Zitat Casey JP, Støve SI, McGorrian C et al (2015) NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep 5:16022CrossRefPubMedPubMedCentral Casey JP, Støve SI, McGorrian C et al (2015) NAA10 mutation causing a novel intellectual disability syndrome with Long QT due to N-terminal acetyltransferase impairment. Sci Rep 5:16022CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Yamada N, Makino Y, Clark RA et al (1994) Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J 302:781–790CrossRefPubMedPubMedCentral Yamada N, Makino Y, Clark RA et al (1994) Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J 302:781–790CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Yoshikawa F, Uchiyama T, Iwasaki H et al (1999) High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun 257:792–797CrossRefPubMed Yoshikawa F, Uchiyama T, Iwasaki H et al (1999) High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun 257:792–797CrossRefPubMed
21.
Zurück zum Zitat Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K (2011) Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun 410:754–758CrossRefPubMed Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K (2011) Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. Biochem Biophys Res Commun 410:754–758CrossRefPubMed
22.
Zurück zum Zitat Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284CrossRefPubMed Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284CrossRefPubMed
23.
Zurück zum Zitat Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560CrossRefPubMed Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560CrossRefPubMed
24.
Zurück zum Zitat Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088CrossRefPubMedPubMedCentral Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308CrossRefPubMedPubMedCentral Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292CrossRefPubMed Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292CrossRefPubMed
27.
Zurück zum Zitat Synofzik M, Beetz C, Bauer C et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48:407–412CrossRefPubMed Synofzik M, Beetz C, Bauer C et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48:407–412CrossRefPubMed
28.
Zurück zum Zitat Kattah JC, Kolsky MP, Guy J, O’Doherty D (1983) Primary position vertical nystagmus and cerebellar ataxia. Arch Neurol 40:310–314CrossRefPubMed Kattah JC, Kolsky MP, Guy J, O’Doherty D (1983) Primary position vertical nystagmus and cerebellar ataxia. Arch Neurol 40:310–314CrossRefPubMed
29.
Zurück zum Zitat Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 40:148–154CrossRefPubMed Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 40:148–154CrossRefPubMed
30.
Zurück zum Zitat Gonzaga-Jauregui C, Harel T, Gambin T et al (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 12:1169–1183CrossRefPubMedPubMedCentral Gonzaga-Jauregui C, Harel T, Gambin T et al (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 12:1169–1183CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203CrossRefPubMed Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203CrossRefPubMed
32.
33.
Zurück zum Zitat Lin CC, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174CrossRefPubMedPubMedCentral Lin CC, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162CrossRefPubMedPubMedCentral Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kasumu A, Liang X, Egorova P, Vorontsova D, Bezprozvanny I (2012) Chronic suppression of inositol 1, 4,5-triphosphate receptor-mediated calcium signaling in cerebellar Purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci 32:12786–12796CrossRefPubMedPubMedCentral Kasumu A, Liang X, Egorova P, Vorontsova D, Bezprozvanny I (2012) Chronic suppression of inositol 1, 4,5-triphosphate receptor-mediated calcium signaling in cerebellar Purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci 32:12786–12796CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Egorova P, Zakharova O, Vlasova O, Bezprozvanny I (2016) In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol 115:2840–2851CrossRefPubMedPubMedCentral Egorova P, Zakharova O, Vlasova O, Bezprozvanny I (2016) In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol 115:2840–2851CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Tu JC, Xiao B, Yuan JP et al (1998) Homer binds a novel proline rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726CrossRefPubMed Tu JC, Xiao B, Yuan JP et al (1998) Homer binds a novel proline rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726CrossRefPubMed
38.
Zurück zum Zitat Kasri NN, Holmes AM, Bultynck G et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23:312–321CrossRefPubMed Kasri NN, Holmes AM, Bultynck G et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23:312–321CrossRefPubMed
39.
Zurück zum Zitat Bezprozvanny I (2011) Role of inositol 1,4,5-trishosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias. Neurochem Res 36(7):1186–1197CrossRefPubMedPubMedCentral Bezprozvanny I (2011) Role of inositol 1,4,5-trishosphate receptors in pathogenesis of Huntington’s disease and spinocerebellar ataxias. Neurochem Res 36(7):1186–1197CrossRefPubMedPubMedCentral
Metadaten
Titel
A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns
verfasst von
Jillian P. Casey
Taisei Hirouchi
Chihiro Hisatsune
Bryan Lynch
Raymond Murphy
Aimee M. Dunne
Akitoshi Miyamoto
Sean Ennis
Nick van der Spek
Bronagh O’Hici
Katsuhiko Mikoshiba
Sally Ann Lynch
Publikationsdatum
15.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 7/2017
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-017-8545-5

Weitere Artikel der Ausgabe 7/2017

Journal of Neurology 7/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.