Skip to main content
Erschienen in: Current Hypertension Reports 1/2019

01.01.2019 | Mechanisms of Hypertension and Target-Organ Damage (Matthew Weir, Section Editor)

A Novel Mechanism of Renal Microcirculation Regulation: Connecting Tubule-Glomerular Feedback

verfasst von: Cesar A. Romero, Oscar A. Carretero

Erschienen in: Current Hypertension Reports | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

In this review, we summarized the current knowledge of connecting tubule-glomerular feedback (CTGF), a novel mechanism of renal microcirculation regulation that integrates sodium handling in the connecting tubule (CNT) with kidney hemodynamics.

Recent Findings

Connecting tubule-glomerular feedback is a crosstalk communication between the CNT and the afferent arteriole (Af-Art), initiated by sodium chloride through the epithelial sodium channel (ENaC). High sodium in the CNT induces Af-Art vasodilation, increasing glomerular pressure and the glomerular filtration rate and favoring sodium excretion. CTGF antagonized and reset tubuloglomerular feedback and thus increased sodium excretion. CTGF is absent in spontaneous hypertensive rats and is overactivated in Dahl salt-sensitive rats. CTGF is also modulated by angiotensin II and aldosterone.

Summary

CTGF is a feedback mechanism that integrates sodium handling in the CNT with glomerular hemodynamics. Lack of CTGF could promote hypertension, and CTGF overactivation may favor glomerular damage and proteinuria. More studies are needed to explore the alterations in renal microcirculation and the role of these alterations in the genesis of hypertension and glomerular damage in animals and humans.

Key Points

CTGF is a vasodilator mechanism that regulates afferent arteriole resistance.
CTGF is absent in spontaneous hypertensive rats and overactivated in Dahl salt-sensitive rats.
CTGF in excess may promote glomerular damage and proteinuria, while the absence may participate in sodium retention and hypertension.
Literatur
1.
Zurück zum Zitat Guyton AC. Blood pressure control—special role of the kidneys and body fluids. Science (New York, NY). 1991;252(5014):1813–6.CrossRef Guyton AC. Blood pressure control—special role of the kidneys and body fluids. Science (New York, NY). 1991;252(5014):1813–6.CrossRef
2.
Zurück zum Zitat Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract. 2017;36(2):117–31.CrossRef Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract. 2017;36(2):117–31.CrossRef
4.
Zurück zum Zitat Brenner BM, Troy JL, Daugharty TM. The dynamics of glomerular ultrafiltration in the rat. J Clin Investig. 1971;50:1776–80.CrossRef Brenner BM, Troy JL, Daugharty TM. The dynamics of glomerular ultrafiltration in the rat. J Clin Investig. 1971;50:1776–80.CrossRef
5.
Zurück zum Zitat Deen WM, Robertson CR, Brenner BM. Glomerular ultrafiltration. FedProc. 1974;33:14–20. Deen WM, Robertson CR, Brenner BM. Glomerular ultrafiltration. FedProc. 1974;33:14–20.
6.
Zurück zum Zitat Brenner BM, Troy JL, Daugharty TM, Deen WM, Robertson CR. Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol. 1972;223:1184–90.CrossRef Brenner BM, Troy JL, Daugharty TM, Deen WM, Robertson CR. Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol. 1972;223:1184–90.CrossRef
7.
Zurück zum Zitat •• Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95(2):405–511 This is an extensive review that describe the renal autoregulation mechanisms with very precised details. CrossRef •• Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev. 2015;95(2):405–511 This is an extensive review that describe the renal autoregulation mechanisms with very precised details. CrossRef
8.
Zurück zum Zitat • Ren Y, Garvin JL, Liu R, Carretero OA. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int. 2007;71(11):1116–21 This is the first description of CTGF. CrossRef • Ren Y, Garvin JL, Liu R, Carretero OA. Crosstalk between the connecting tubule and the afferent arteriole regulates renal microcirculation. Kidney Int. 2007;71(11):1116–21 This is the first description of CTGF. CrossRef
9.
Zurück zum Zitat Peti-Peterdi J, Bebok Z, Lapointe JY, Bell PD. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase. Am J Physiol Ren Physiol. 2002;282(2):F324–9.CrossRef Peti-Peterdi J, Bebok Z, Lapointe JY, Bell PD. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase. Am J Physiol Ren Physiol. 2002;282(2):F324–9.CrossRef
10.
Zurück zum Zitat Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Ren Physiol. 2004;286:F1054–F8.CrossRef Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Ren Physiol. 2004;286:F1054–F8.CrossRef
11.
Zurück zum Zitat Ren Y, Garvin JL, Liu R, Carretero OA. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int. 2004;66(4):1479–85.CrossRef Ren Y, Garvin JL, Liu R, Carretero OA. Role of macula densa adenosine triphosphate (ATP) in tubuloglomerular feedback. Kidney Int. 2004;66(4):1479–85.CrossRef
12.
Zurück zum Zitat Kirk KL, Bell PD, Barfuss DW, Ribadeneira M. Direct visualization of the isolated and perfused macula densa. Am J Physiol. 1985;248:F890–F4.PubMed Kirk KL, Bell PD, Barfuss DW, Ribadeneira M. Direct visualization of the isolated and perfused macula densa. Am J Physiol. 1985;248:F890–F4.PubMed
13.
Zurück zum Zitat Barajas L, Powers K, Carretero OA, Scicli AG, Inagami T. Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int. 1986;29(5):965–70.CrossRef Barajas L, Powers K, Carretero OA, Scicli AG, Inagami T. Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int. 1986;29(5):965–70.CrossRef
14.
Zurück zum Zitat Dorup J, Morsing P, Rasch R. Tubule-tubule and tubule-arteriole contacts in rat kidney distal nephrons. A morphologic study based on computer-assisted three-dimensional reconstructions. Lab Investig. 1992;67(6):761–9.PubMed Dorup J, Morsing P, Rasch R. Tubule-tubule and tubule-arteriole contacts in rat kidney distal nephrons. A morphologic study based on computer-assisted three-dimensional reconstructions. Lab Investig. 1992;67(6):761–9.PubMed
15.
Zurück zum Zitat Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch Eur J Physiol. 2009;458(1):111–35.CrossRef Loffing J, Korbmacher C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch Eur J Physiol. 2009;458(1):111–35.CrossRef
16.
Zurück zum Zitat Frindt G, Palmer LG. Na channels in the rat connecting tubule. Am J Physiol Ren Physiol. 2004;286(4):F669–74.CrossRef Frindt G, Palmer LG. Na channels in the rat connecting tubule. Am J Physiol Ren Physiol. 2004;286(4):F669–74.CrossRef
17.
Zurück zum Zitat Wall SM, Lazo-Fernandez Y. The role of pendrin in renal physiology. Annu Rev Physiol. 2015;77:363–78.CrossRef Wall SM, Lazo-Fernandez Y. The role of pendrin in renal physiology. Annu Rev Physiol. 2015;77:363–78.CrossRef
18.
Zurück zum Zitat Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1104–13.CrossRef Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1104–13.CrossRef
19.
Zurück zum Zitat Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract. 2017;36(4):305–17.CrossRef Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract. 2017;36(4):305–17.CrossRef
20.
Zurück zum Zitat • Liu R, Layton AT. Modeling the effects of positive and negative feedback in kidney blood flow control. Math Biosci. 2016;276:8–18 This study explore the effects of CTGF on TGF. CrossRef • Liu R, Layton AT. Modeling the effects of positive and negative feedback in kidney blood flow control. Math Biosci. 2016;276:8–18 This study explore the effects of CTGF on TGF. CrossRef
21.
Zurück zum Zitat Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–8.CrossRef Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A. 2001;98:9983–8.CrossRef
22.
Zurück zum Zitat Ren Y, D’Ambrosio MA, Garvin JL, Wang H, Carretero OA. Possible mediators of connecting tubule glomerular feedback. Hypertension. 2009;53(part 2):319–23.CrossRef Ren Y, D’Ambrosio MA, Garvin JL, Wang H, Carretero OA. Possible mediators of connecting tubule glomerular feedback. Hypertension. 2009;53(part 2):319–23.CrossRef
23.
Zurück zum Zitat Ren Y, D’Ambrosio MA, Wang H, Garvin JL, Carretero OA. Participation of prostaglandin E 2 and EP4 receptors in connecting tubule glomerular feedback (CTGF) [abstract]. Hypertension. 2012;60(3 Supplement):A33. Ren Y, D’Ambrosio MA, Wang H, Garvin JL, Carretero OA. Participation of prostaglandin E 2 and EP4 receptors in connecting tubule glomerular feedback (CTGF) [abstract]. Hypertension. 2012;60(3 Supplement):A33.
24.
Zurück zum Zitat Ren Y, D’Ambrosio MA, Wang H, Peterson EL, Garvin JL, Carretero OA. Mechanisms of angiotensin II-enhanced connecting tubule glomerular feedback. Am J Physiol Ren Physiol. 2012;303(2):F259–F65.CrossRef Ren Y, D’Ambrosio MA, Wang H, Peterson EL, Garvin JL, Carretero OA. Mechanisms of angiotensin II-enhanced connecting tubule glomerular feedback. Am J Physiol Ren Physiol. 2012;303(2):F259–F65.CrossRef
25.
Zurück zum Zitat Ren Y, D’Ambrosio MA, Garvin JL, Leung P, Kutskill K, Wang H, et al. Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30. Am J Physiol Ren Physiol. 2014;307(4):F427–34.CrossRef Ren Y, D’Ambrosio MA, Garvin JL, Leung P, Kutskill K, Wang H, et al. Aldosterone sensitizes connecting tubule glomerular feedback via the aldosterone receptor GPR30. Am J Physiol Ren Physiol. 2014;307(4):F427–34.CrossRef
26.
Zurück zum Zitat Romero CA, Peixoto AJ, Orias M. Estimated GFR or albuminuria: which one is really associated with resistant hypertension? Semin Nephrol. 2014;34(5):492–7.CrossRef Romero CA, Peixoto AJ, Orias M. Estimated GFR or albuminuria: which one is really associated with resistant hypertension? Semin Nephrol. 2014;34(5):492–7.CrossRef
27.
Zurück zum Zitat Brown R, Ollerstam A, Persson AE. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion. Kidney Int. 2004;65(4):1349–56.CrossRef Brown R, Ollerstam A, Persson AE. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion. Kidney Int. 2004;65(4):1349–56.CrossRef
28.
Zurück zum Zitat Wang H, D’Ambrosio MA, Garvin JL, Ren Y, Carretero OA. Connecting tubule glomerular feedback in hypertension. Hypertension. 2013;62(4):738–45.CrossRef Wang H, D’Ambrosio MA, Garvin JL, Ren Y, Carretero OA. Connecting tubule glomerular feedback in hypertension. Hypertension. 2013;62(4):738–45.CrossRef
29.
Zurück zum Zitat Monu SR, Ren Y, Masjoan-Juncos JX, Kutskill K, Wang H, Kumar N, et al. Connecting tubule glomerular feedback mediates tubuloglomerular feedback resetting after unilateral nephrectomy. Am J Physiol Ren Physiol. 2018;315(4):F806–F11.CrossRef Monu SR, Ren Y, Masjoan-Juncos JX, Kutskill K, Wang H, Kumar N, et al. Connecting tubule glomerular feedback mediates tubuloglomerular feedback resetting after unilateral nephrectomy. Am J Physiol Ren Physiol. 2018;315(4):F806–F11.CrossRef
30.
Zurück zum Zitat Frohlich ED, Messerli FH, Dunn FG, Oigman W, Ventura HO, Sundgaard-Riise K. Greater renal vascular involvement in the black patient with essential hypertension. A comparison of systemic and renal hemodynamics in black and white patients. Miner Electrolyte Metab. 1984;10(3):173–7.PubMed Frohlich ED, Messerli FH, Dunn FG, Oigman W, Ventura HO, Sundgaard-Riise K. Greater renal vascular involvement in the black patient with essential hypertension. A comparison of systemic and renal hemodynamics in black and white patients. Miner Electrolyte Metab. 1984;10(3):173–7.PubMed
31.
Zurück zum Zitat Weir MR. Salt intake and hypertensive renal injury in African-Americans. A therapeutic perspective. Am J Hypertens. 1995;8(6):635–44.CrossRef Weir MR. Salt intake and hypertensive renal injury in African-Americans. A therapeutic perspective. Am J Hypertens. 1995;8(6):635–44.CrossRef
32.
Zurück zum Zitat Raij L, Azar S, Keane WF. Role of hypertension in progressive glomerular immune injury. Hypertension. 1985;7(3 Pt 1):398–404.CrossRef Raij L, Azar S, Keane WF. Role of hypertension in progressive glomerular immune injury. Hypertension. 1985;7(3 Pt 1):398–404.CrossRef
33.
Zurück zum Zitat Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Ren Physiol. 2017;313(2):F135–F40.CrossRef Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol Ren Physiol. 2017;313(2):F135–F40.CrossRef
34.
Zurück zum Zitat Wang H, Romero CA, Masjoan Juncos JX, Monu SR, Peterson EL, Carretero OA. Effect of salt intake on afferent arteriolar dilatation: role of connecting tubule glomerular feedback (CTGF). Am J Physiol Ren Physiol. 2017;313(6):F1209–F15.CrossRef Wang H, Romero CA, Masjoan Juncos JX, Monu SR, Peterson EL, Carretero OA. Effect of salt intake on afferent arteriolar dilatation: role of connecting tubule glomerular feedback (CTGF). Am J Physiol Ren Physiol. 2017;313(6):F1209–F15.CrossRef
35.
Zurück zum Zitat Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol Scand. 1986;126(3):333–9.CrossRef Holstein-Rathlou NH, Leyssac PP. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Acta Physiol Scand. 1986;126(3):333–9.CrossRef
36.
Zurück zum Zitat Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974;47(5):435–48.PubMed Bianchi G, Fox U, Di Francesco GF, Giovanetti AM, Pagetti D. Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med. 1974;47(5):435–48.PubMed
37.
Zurück zum Zitat Song J, Wang L, Fan F, Wei J, Zhang J, Lu Y, et al. Role of the primary cilia on the macula Densa and thick ascending limbs in regulation of sodium excretion and hemodynamics. Hypertension. 2017;70(2):324–33.CrossRef Song J, Wang L, Fan F, Wei J, Zhang J, Lu Y, et al. Role of the primary cilia on the macula Densa and thick ascending limbs in regulation of sodium excretion and hemodynamics. Hypertension. 2017;70(2):324–33.CrossRef
38.
Zurück zum Zitat Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, et al. Macula Densa nitric oxide synthase 1beta protects against salt-sensitive hypertension. J Am Soc Nephrol. 2016;27(8):2346–56.CrossRef Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, et al. Macula Densa nitric oxide synthase 1beta protects against salt-sensitive hypertension. J Am Soc Nephrol. 2016;27(8):2346–56.CrossRef
39.
Zurück zum Zitat Romero CA, Monu S, Knight R, Carretero OA, editors. Connecting tubule-glomerular feedback (CTGF) in renal hemodynamics and blood pressure (BP) after unilateral nephrectomy (UNX). Hypertension; 2016: Vol 68, Issue Suppl_1 (Abstract P148), USA. Romero CA, Monu S, Knight R, Carretero OA, editors. Connecting tubule-glomerular feedback (CTGF) in renal hemodynamics and blood pressure (BP) after unilateral nephrectomy (UNX). Hypertension; 2016: Vol 68, Issue Suppl_1 (Abstract P148), USA.
40.
Zurück zum Zitat Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development work group M. evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.CrossRef Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development work group M. evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.CrossRef
41.
Zurück zum Zitat Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.CrossRef Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.CrossRef
42.
Zurück zum Zitat Praga M, Morales E. The fatty kidney: obesity and renal disease. Nephron. 2017;136(4):273–6.CrossRef Praga M, Morales E. The fatty kidney: obesity and renal disease. Nephron. 2017;136(4):273–6.CrossRef
43.
Zurück zum Zitat Maheshwari M, Romero CA, Monu SR, Kumar N, Liao TD, Peterson EL, et al. Renal protective effects of N-acetyl-Seryl-aspartyl-Lysyl-proline (ac-SDKP) in obese rats on a high-salt diet. Am J Hypertens. 2018;31(8):902–9.CrossRef Maheshwari M, Romero CA, Monu SR, Kumar N, Liao TD, Peterson EL, et al. Renal protective effects of N-acetyl-Seryl-aspartyl-Lysyl-proline (ac-SDKP) in obese rats on a high-salt diet. Am J Hypertens. 2018;31(8):902–9.CrossRef
44.
Zurück zum Zitat Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J, et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant. 2008;23(12):3946–52.CrossRef Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J, et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant. 2008;23(12):3946–52.CrossRef
46.
Zurück zum Zitat Andersen H, Hansen PB, Bistrup C, Nielsen F, Henriksen JE, Jensen BL. Significant natriuretic and antihypertensive action of the epithelial sodium channel blocker amiloride in diabetic patients with and without nephropathy. J Hypertens. 2016;34(8):1621–9.CrossRef Andersen H, Hansen PB, Bistrup C, Nielsen F, Henriksen JE, Jensen BL. Significant natriuretic and antihypertensive action of the epithelial sodium channel blocker amiloride in diabetic patients with and without nephropathy. J Hypertens. 2016;34(8):1621–9.CrossRef
47.
Zurück zum Zitat Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 2018;6(6):464–75.CrossRef Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 2018;6(6):464–75.CrossRef
48.
Zurück zum Zitat Viera AJ, Wouk N. Potassium disorders: hypokalemia and hyperkalemia. Am Fam Phys. 2015;92(6). Viera AJ, Wouk N. Potassium disorders: hypokalemia and hyperkalemia. Am Fam Phys. 2015;92(6).
49.
Zurück zum Zitat Sepehrdad R, Chander PN, Oruene A, Rosenfeld L, Levine S, Stier CT Jr. Amiloride reduces stroke and renalinjury in stroke-prone hypertensive rats. Am J Hypertens. 2003;16(4):312–8.CrossRef Sepehrdad R, Chander PN, Oruene A, Rosenfeld L, Levine S, Stier CT Jr. Amiloride reduces stroke and renalinjury in stroke-prone hypertensive rats. Am J Hypertens. 2003;16(4):312–8.CrossRef
50.
Zurück zum Zitat Zhang B, Xie S, Shi W, Yang Y. Amiloride off-target effect inhibits podocyte urokinase receptor expression and reduces proteinuria. Nephrol Dial Transplant. 2012;27(5):1746–55.CrossRef Zhang B, Xie S, Shi W, Yang Y. Amiloride off-target effect inhibits podocyte urokinase receptor expression and reduces proteinuria. Nephrol Dial Transplant. 2012;27(5):1746–55.CrossRef
51.
Zurück zum Zitat Xu LB, Chi N, Shi W. Amiloride, a urokinase-type plasminogen activator receptor (uTPA) inhibitor, reduces proteinurea in podocytes. Genet Mol Res. 2015;14(3):9518–29.CrossRef Xu LB, Chi N, Shi W. Amiloride, a urokinase-type plasminogen activator receptor (uTPA) inhibitor, reduces proteinurea in podocytes. Genet Mol Res. 2015;14(3):9518–29.CrossRef
52.
Zurück zum Zitat Vassalli JD, Belin D. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett. 1987;214(1):187–91.CrossRef Vassalli JD, Belin D. Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett. 1987;214(1):187–91.CrossRef
53.
Zurück zum Zitat Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney—implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch Eur J Physiol. 2015;467(3):531–42.CrossRef Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney—implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch Eur J Physiol. 2015;467(3):531–42.CrossRef
54.
Zurück zum Zitat Staehr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, et al. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Ren Physiol. 2015;309(3):F235–41.CrossRef Staehr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, et al. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Ren Physiol. 2015;309(3):F235–41.CrossRef
55.
Zurück zum Zitat Trimarchi H, Forrester M, Lombi F, Pomeranz V, Rana MS, Karl A, et al. Amiloride as an alternate adjuvant antiproteinuric agent in Fabry disease: the potential roles of plasmin and uPAR. Case Rep Nephrol. 2014;2014:854521.PubMedPubMedCentral Trimarchi H, Forrester M, Lombi F, Pomeranz V, Rana MS, Karl A, et al. Amiloride as an alternate adjuvant antiproteinuric agent in Fabry disease: the potential roles of plasmin and uPAR. Case Rep Nephrol. 2014;2014:854521.PubMedPubMedCentral
56.
Zurück zum Zitat Buhl KB, Oxlund CS, Friis UG, Svenningsen P, Bistrup C, Jacobsen IA, et al. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J Hypertens. 2014;32(8):1672–7 discussion 7.CrossRef Buhl KB, Oxlund CS, Friis UG, Svenningsen P, Bistrup C, Jacobsen IA, et al. Plasmin in urine from patients with type 2 diabetes and treatment-resistant hypertension activates ENaC in vitro. J Hypertens. 2014;32(8):1672–7 discussion 7.CrossRef
57.
Zurück zum Zitat Oxlund CS, Buhl KB, Jacobsen IA, Hansen MR, Gram J, Henriksen JE, et al. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension. J Am Soc Hypertens. 2014;8(12):872–81.CrossRef Oxlund CS, Buhl KB, Jacobsen IA, Hansen MR, Gram J, Henriksen JE, et al. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension. J Am Soc Hypertens. 2014;8(12):872–81.CrossRef
Metadaten
Titel
A Novel Mechanism of Renal Microcirculation Regulation: Connecting Tubule-Glomerular Feedback
verfasst von
Cesar A. Romero
Oscar A. Carretero
Publikationsdatum
01.01.2019
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 1/2019
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-019-0911-5

Weitere Artikel der Ausgabe 1/2019

Current Hypertension Reports 1/2019 Zur Ausgabe

Hypertension and the Heart (Bharathi Upadhya, Section Editor)

Preventing Heart Failure by Treating Systolic Hypertension: What Does the SPRINT Add?

Guidelines, Clinical Trials, and Meta-Analysis (William J. Kostis, Section Editor)

A Meta-analysis to Determine the Validity of Taking Blood Pressure Using the Indirect Cuff Method

Hypertension and the Heart (Bharathi Upadhya, Section Editor)

Recent Advances in Imaging of Hypertensive Heart Disease

Inflammation and Cardiovascular Diseases (Annet Kirabo, Section Editor)

Autoimmune Disease-Associated Hypertension

Hypertension and the Heart (Bharathi Upadhya, Section Editor)

Unanswered Questions Regarding Blood Pressure Management for HF Prevention

Antihypertensive Agents: Mechanisms of Drug Action (Michael E. Ernst, Section Editor)

Management of “Hypertension” Based on Blood Pressure Level Versus an Absolute Cardiovascular Risk Approach

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.