Skip to main content
main-content

07.01.2020 | Original Research Article | Ausgabe 3/2020

Documenta Ophthalmologica 3/2020

A novel method for electroretinogram assessment in patients with central retinal vein occlusion

Zeitschrift:
Documenta Ophthalmologica > Ausgabe 3/2020
Autoren:
Neda Sefandarmaz, Soroor Behbahani, Alireza Ramezani
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

Central retinal vein occlusion (CRVO) is the second most common retinal vascular disorder after diabetic retinopathy that affects the eyes. We propose a method for distinction of normal and central CRVO eyes based on electroretinogram (ERG).

Methods

Seventeen patients with CRVO in one eye were analyzed. Their ERG signals were collected in six different stimuli, including four records in the darkness (dark-adapted 0.01, dark-adapted 3.0, dark-adapted oscillatory potentials, and dark-adapted 10) and two records in brightness (light-adapted 3.0 and light-adapted 30 Hz flicker). Nonlinear features such as Hurst exponent (HE) and approximate entropy (ApEn) were extracted from healthy and CRVO eyes. Finally, a parabolic mapping and two criteria (theta angle and the density of points) were proposed to distinguish the groups.

Results

For ApEn, the P values of dark-adapted 3.0 oscillatory (P = 0.0433) and flicker (P = 0.0425) confirmed significant differences between the groups. For HE, the P values of dark-adapted 3.0 oscillatory (P = 0.0421) and flicker 30 Hz (P = 0.0402) confirmed differences between the healthy and CRVO groups. The P values of theta angle for dark-adapted 3.0 (P = 0.0199), dark-adapted oscillatory (P = 0.0265), dark-adapted 10.0 (P = 0.0166), light-adapted 3.0 (P = 0.0411), and flicker (P = 0.0361) showed significant differences. Using the density criterion, the statistical test demonstrated a significant difference between the groups in dark-adapted 3 (P = 0.0038), dark-adapted oscillatory (P = 0.0102), dark-adapted 10.0 (P = 0.0071), light-adapted 3.0 (P = 0.0319), and flicker 30 Hz (P = 0.0076).

Conclusion

The proposed features have made it possible to distinguish between healthy and CRVO eyes. This method could be helpful in some cases with no definite diagnosis or to estimate the severity of CRVO.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt e.Med zum Sonderpreis bestellen!

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2020

Documenta Ophthalmologica 3/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

28.08.2020 | Leitthema | Ausgabe 10/2020

Künstliche Intelligenz in der Augenheilkunde

Leitfaden für Ärzte zur kritischen Bewertung von Studien