Skip to main content
Erschienen in:

08.08.2023 | Imaging Informatics and Artificial Intelligence

A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma

verfasst von: Liqiang Zhang, Rui Wang, Jueni Gao, Yi Tang, Xinyi Xu, Yubo Kan, Xu Cao, Zhipeng Wen, Zhi Liu, Shaoguo Cui, Yongmei Li

Erschienen in: European Radiology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)–mutant astrocytoma.

Methods

Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed.

Results

The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively.

Conclusions

The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.

Clinical relevance statement

A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning.

Key Points

• CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis.
• An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status.
• The predictive performance based on ConvNeXt network was better than that of ResNet network.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86 Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1-iv86
3.
Zurück zum Zitat Appin CL, Brat DJ (2015) Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Adv Anat Pathol 22:50–58CrossRefPubMed Appin CL, Brat DJ (2015) Molecular pathways in gliomagenesis and their relevance to neuropathologic diagnosis. Adv Anat Pathol 22:50–58CrossRefPubMed
4.
Zurück zum Zitat Zhang M, Pan Y, Qi X et al (2018) Identification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis System. Appl Immunohistochem Mol Morphol 26:101–107CrossRefPubMed Zhang M, Pan Y, Qi X et al (2018) Identification of new biomarkers associated with IDH mutation and prognosis in astrocytic tumors using NanoString nCounter Analysis System. Appl Immunohistochem Mol Morphol 26:101–107CrossRefPubMed
5.
Zurück zum Zitat Cimino PJ, Holland EC (2019) Targeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomas. Neuro Oncol 21:819–821CrossRefPubMedPubMedCentral Cimino PJ, Holland EC (2019) Targeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomas. Neuro Oncol 21:819–821CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zhang B, Chang K, Ramkissoon S et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117CrossRefPubMed Zhang B, Chang K, Ramkissoon S et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117CrossRefPubMed
7.
Zurück zum Zitat Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151CrossRefPubMed Kim M, Jung SY, Park JE et al (2020) Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur Radiol 30:2142–2151CrossRefPubMed
8.
Zurück zum Zitat Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411CrossRefPubMed Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411CrossRefPubMed
9.
Zurück zum Zitat Choi YS, Bae S, Chang JH et al (2021) Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23:304–313CrossRefPubMed Choi YS, Bae S, Chang JH et al (2021) Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23:304–313CrossRefPubMed
10.
Zurück zum Zitat Reis GF, Pekmezci M, Hansen HM et al (2015) CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol 74:442–452CrossRefPubMed Reis GF, Pekmezci M, Hansen HM et al (2015) CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol 74:442–452CrossRefPubMed
11.
Zurück zum Zitat Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefPubMedPubMedCentral Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Shirahata M, Ono T, Stichel D et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136:153–166CrossRefPubMed Shirahata M, Ono T, Stichel D et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136:153–166CrossRefPubMed
13.
Zurück zum Zitat Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251CrossRefPubMedPubMedCentral Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lu VM, O’Connor KP, Shah AH et al (2020) The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literature. J Neurooncol 148:221–229CrossRefPubMed Lu VM, O’Connor KP, Shah AH et al (2020) The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literature. J Neurooncol 148:221–229CrossRefPubMed
15.
Zurück zum Zitat Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213 Di Bonaventura R, Montano N, Giordano M et al (2021) Reassessing the role of brain tumor biopsy in the era of advanced surgical, molecular, and imaging techniques-a single-center experience with long-term follow-up. J Pers Med 11:1213
16.
Zurück zum Zitat Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057CrossRefPubMedPubMedCentral Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
20.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv, Vaswani A, Shazeer N, Parmar N et al (2017) Attention Is All You NeedarXiv,
21.
Zurück zum Zitat Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060 Calabrese E, Rudie JD, Rauschecker AM et al (2022) Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neurooncol Adv 4:vdac060
22.
Zurück zum Zitat Crespo I, Vital AL, Gonzalez-Tablas M et al (2015) Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol 185:1820–1833CrossRefPubMed Crespo I, Vital AL, Gonzalez-Tablas M et al (2015) Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol 185:1820–1833CrossRefPubMed
23.
Zurück zum Zitat Toyokuni S (2011) Mysterious link between iron overload and CDKN2A/2B. J Clin Biochem Nutr 48:46–49CrossRefPubMed Toyokuni S (2011) Mysterious link between iron overload and CDKN2A/2B. J Clin Biochem Nutr 48:46–49CrossRefPubMed
24.
Zurück zum Zitat Di Stefano AL, Enciso-Mora V, Marie Y et al (2013) Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro Oncol 15:542–547CrossRefPubMed Di Stefano AL, Enciso-Mora V, Marie Y et al (2013) Association between glioma susceptibility loci and tumour pathology defines specific molecular etiologies. Neuro Oncol 15:542–547CrossRefPubMed
25.
Zurück zum Zitat Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103 Verheul C, Ntafoulis I, Kers TV et al (2021) Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 3:vdab103
26.
Zurück zum Zitat Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608CrossRefPubMedPubMedCentral Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Carstam L, Corell A, Smits A et al (2021) WHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomas. Front Oncol 11:803975CrossRefPubMed Carstam L, Corell A, Smits A et al (2021) WHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomas. Front Oncol 11:803975CrossRefPubMed
28.
Zurück zum Zitat Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213 Esmaeili M, Vettukattil R, Banitalebi H, Krogh NR, Geitung JT (2021) Explainable artificial intelligence for human-machine interaction in brain tumor localization. J Pers Med 11:1213
29.
Zurück zum Zitat Yogananda CGB, Shah BR, Nalawade SS et al (2021) MRI-based deep-learning method for determining glioma MGMT promoter methylation status. AJNR Am J Neuroradiol 42:845–852CrossRefPubMedPubMedCentral Yogananda CGB, Shah BR, Nalawade SS et al (2021) MRI-based deep-learning method for determining glioma MGMT promoter methylation status. AJNR Am J Neuroradiol 42:845–852CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445 Chen S, Xu Y, Ye M et al (2022) Predicting MGMT promoter methylation in diffuse gliomas using deep learning with radiomics. J Clin Med 11:3445
31.
Zurück zum Zitat Yan J, Zhang S, Sun Q et al (2022) Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Lab Invest 102:154–159CrossRefPubMed Yan J, Zhang S, Sun Q et al (2022) Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Lab Invest 102:154–159CrossRefPubMed
32.
Zurück zum Zitat Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349 Vobugari N, Raja V, Sethi U, Gandhi K, Raja K, Surani SR (2022) Advancements in oncology with artificial intelligence-a review article. Cancers (Basel) 14:1349
33.
Zurück zum Zitat Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S (2022) A ConvNet for the 2020s. arXiv e-prints
34.
Zurück zum Zitat Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12 Hassanien MA, Singh VK, Puig D, Abdel-Nasser M (2022) Predicting breast tumor malignancy using deep ConvNeXt radiomics and quality-based score pooling in ultrasound sequences. Diagnostics (Basel) 12
35.
Zurück zum Zitat Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: convolutional block attention module. Springer, Cham Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: convolutional block attention module. Springer, Cham
Metadaten
Titel
A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma
verfasst von
Liqiang Zhang
Rui Wang
Jueni Gao
Yi Tang
Xinyi Xu
Yubo Kan
Xu Cao
Zhipeng Wen
Zhi Liu
Shaoguo Cui
Yongmei Li
Publikationsdatum
08.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 1/2024
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-09944-y

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.