Skip to main content
Erschienen in: Archives of Virology 4/2020

Open Access 10.02.2020 | Annotated Sequence Record

A novel narnavirus isolated from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici

verfasst von: Yanhui Zhang, Jing Zhao, Xiaofei Liang, Li Zheng, Zhensheng Kang

Erschienen in: Archives of Virology | Ausgabe 4/2020

Abstract

The complete genome of a novel fungal virus, Puccinia striiformis narnavirus 1 (PsNV1), was sequenced and analyzed. The full-length cDNA sequence is 2340 bp in length with a GC content of 50.04%. PsNV1 contains a single open reading frame (ORF), which encodes a putative RNA-dependent RNA polymerase (RdRp) of 741 amino acids with a molecular mass of 81.8 kDa. RdRp phylogeny showed that PsNV1 grouped together with Fusarium poae narnavirus 1 (FpNV1) as a sister branch of narnaviruses, forming a distinct clade. The results of genome sequence comparisons and phylogenetic analysis indicate that PsNV1 is a new member in the genus Narnavirus. To our knowledge, this is the first report of a narnavirus genome sequence in the obligately parasitic fungus Puccinia striiformis f. sp. tritici.
Hinweise
Handling Editor: Robert H.A. Coutts.
The original version of this article was revised: Due to a retrospective Open Access cancellation.
A correction to this article is available online at https://​doi.​org/​10.​1007/​s00705-020-04575-w.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Wheat stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat (Triticum aestivum) worldwide [1]. P. striiformis is an obligate biotrophic parasite that cannot be cultured on artificial medium and requires both primary (wheat or grasses) and alternate (Berberis or Mahonia spp.) host plants to complete its life cycle [24]. Mycoviruses have been commonly associated with all major lineages of plant-pathogenic fungi [5]. Rusts were first confirmed to harbor dsRNA mycoviruses in 1985 [6]. So far, however, only five mycovirus genomes parasitizing P. striiformis have been reported [7, 8]. The reasons for the shortage of research data on mycoviruses in P. striiformis are that it is difficult to obtain biological material and that many mycoviruses cause asymptomatic infections.
The family Narnaviridae currently comprises two genera, Narnavirus and Mitovirus. The genome of viruses of the family Narnaviridae is composed of a positive-sense single-stranded RNA segment (2.2 to 5.0 kb) containing a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) [911]. A novel mitovirus in P. striiformis was first reported in 2019 in our laboratory [8]. In the present study, we report another novel mycovirus, Puccinia striiformis narnavirus 1 (PsNV1), infecting P. striiformis strain SCSN-12. Genome sequence alignment and phylogenetic analysis indicate that PsNV1 is a new member of the genus Narnavirus belonging to the family Narnaviridae.

Provenance of the virus material

P. striiformis strain SCSN-12 was isolated from a urediniospore pustule infecting wheat in Sichuan province, China, in 2015. This P. striiformis strain was propagated on the susceptible wheat variety Mingxian 169 as described previously [8], and the urediospores were harvested and stored at 4 °C until further use [12]. dsRNA was obtained from 0.5 g of urediniospores by selective absorption to a cellulose powder CF-11 column containing 16% ethanol [8]. The extracted dsRNAs were further treated with DNase I and S1 nuclease (Takara) to remove genomic DNA and ssRNA as described previously (Fig. 1A) [7]. A cDNA library of the purified dsRNA sample was constructed using an NEBNext®Ultra™ RNA Library Prep Kit (Illumina) according to the manufacturer’s protocol. To obtain the terminal sequences of the dsRNA, the 5’ and 3’ termini were amplified by rapid amplification of cDNA ends (RACE kit, Invitrogen) [13]. The amplified PCR product was cloned and sequenced by the Sanger method. The sequence was assembled using SeqMan from the Lasergene sequence analysis package (DNASTAR). The complete nucleotide sequence of PsNV1 has been submitted to the GenBank database under the accession number MN756800. The putative ORF was identified using the ORF Finder program (http://​www.​ncbi.​nlm.​gov/​ gorf/gorf.html). A protein domain search was performed using the Conserved Domain Database (CDD) (http://​www.​ncbi.​nlm.​nih.​gov/​Structure/​cdd/​wrpsb.​cgi). Multiple sequence alignment of the protein sequences were performed with ClustalW 2.0 [14] and DNAMAN 7.0 software (Lynnon Biosoft, USA). A phylogenetic tree was generated by the maximum-likelihood (ML) method in MEGA 7.0 software with 1000 bootstrap replicates [15].

Sequence properties

The full-length cDNA sequence of the PsNV1 genome is 2,340 nt in length with a GC content of 50.04%. The 5′ and 3′ untranslated regions (UTRs) of PSNV1 are 34 and 80 nt in length, respectively (Fig. 1B). Using the Unafold program (http://​unafold.​rna.​albany.​edu), two potential stem-loop structures were predicted, and the initial ΔG values of 5′ and 3′ UTRs were -20.30 kcal/mol and -40.20 kcal/mol, respectively (Fig. 1C). Using the standard genetic code, the PsNV1 genome contained a single ORF encoding a 741-amino-acid (aa) protein with a molecular mass of 81.8 kDa (Fig. 1B).
A sequence search using the BLASTp tool showed that this 81.8-kDa protein had significant sequence similarity to the RNA-dependent RNA polymerases (RdRps) of narnaviruses. Fusarium poae narnavirus 1 (FpNV1) [16] was the best match (29.6% identity), followed by Saccharomyces 23S RNA narnavirus (26.96% identity) and Saccharomyces 20S RNA narnavirus (24.9% identity) [9]. Furthermore, a CDD search and multiple protein sequence alignments indicated that the RdRp domain includes six conserved motifs (Fig. 2A) that are characteristic of members of the genus Narnavirus. These results suggest that P. striiformis strain SCSN-12 was infected by a novel narnavirus, PsNV1.
To investigate the relationship between PsNV1 and other mycoviruses, a molecular phylogenetic tree was constructed based on the RdRp amino acid sequences of PsNV1, other narnaviruses, mitoviruses, and plant ourmiaviruses. The phylogenetic tree revealed that PsNV1 grouped together with FpNV1 as a sister branch of narnaviruses, forming a distinct clade. Therefore, the phylogenetic tree clearly placed PsNV1 in a separate cluster containing FpNV1 and unclassified narnaviruses (Fig. 2B). To our knowledge, this is the first report of the full-length nucleotide sequence of a novel narnavirus in the obligate parasitic fungus P. striiformis.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141CrossRef Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141CrossRef
2.
Zurück zum Zitat Zheng WM, Huang LL, Huang JQ, Wang XJ, Chen XM, Zhao J (eds) (2014) High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun 5: 3134–3134 Zheng WM, Huang LL, Huang JQ, Wang XJ, Chen XM, Zhao J (eds) (2014) High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun 5: 3134–3134
3.
Zurück zum Zitat Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94CrossRef Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94CrossRef
4.
Zurück zum Zitat Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369CrossRef Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369CrossRef
5.
Zurück zum Zitat Ghabrial SA, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479:356–368CrossRef Ghabrial SA, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479:356–368CrossRef
6.
Zurück zum Zitat Newton AC, Caten CE, Johnson R (1985) Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol 34:235–247CrossRef Newton AC, Caten CE, Johnson R (1985) Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol 34:235–247CrossRef
7.
Zurück zum Zitat Zheng L, Lu X, Liang XF, Jiang SC, Zhao J, Zhan GM, Liu P, Wu JH, Kang ZS (2017) Molecular characterization of novel totivirus-like double-stranded RNA from Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Front Microbiol 8:1960CrossRef Zheng L, Lu X, Liang XF, Jiang SC, Zhao J, Zhan GM, Liu P, Wu JH, Kang ZS (2017) Molecular characterization of novel totivirus-like double-stranded RNA from Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Front Microbiol 8:1960CrossRef
8.
Zurück zum Zitat Zheng L, Zhao J, Liang X, Zhuang H, Qi T, Kang Z (2019) Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 164:897–901CrossRef Zheng L, Zhao J, Liang X, Zhuang H, Qi T, Kang Z (2019) Complete genome sequence of a novel mitovirus from the wheat stripe rust fungus Puccinia striiformis. Arch Virol 164:897–901CrossRef
9.
Zurück zum Zitat Hillman BI, Cai G (2013) The family Narnaviridae: simplest of RNA viruses. Adv Virus Res 86:149–176CrossRef Hillman BI, Cai G (2013) The family Narnaviridae: simplest of RNA viruses. Adv Virus Res 86:149–176CrossRef
10.
Zurück zum Zitat Wickner RB, Fujimura T, Esteban R (2013) Viruses and prions of Saccharomyces cerevisiae. Adv Virus Res 86:1–36CrossRef Wickner RB, Fujimura T, Esteban R (2013) Viruses and prions of Saccharomyces cerevisiae. Adv Virus Res 86:1–36CrossRef
11.
Zurück zum Zitat Vainio EJ (2019) Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res 271:1–5CrossRef Vainio EJ (2019) Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res 271:1–5CrossRef
12.
Zurück zum Zitat Cao LH, Xu SC, Chen WQ, Liu TG, Chen WQ (2008) Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett Appl Microbiol 46:501–506CrossRef Cao LH, Xu SC, Chen WQ, Liu TG, Chen WQ (2008) Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett Appl Microbiol 46:501–506CrossRef
13.
Zurück zum Zitat Komatsu K, Katayama Y, Omatsu T, Mizutani T, Fukuhara T, Kodama M, Arie T, Teraoka T, Moriyama H (2016) Genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria arborescens. Arch Virol 161:2627–2631CrossRef Komatsu K, Katayama Y, Omatsu T, Mizutani T, Fukuhara T, Kodama M, Arie T, Teraoka T, Moriyama H (2016) Genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria arborescens. Arch Virol 161:2627–2631CrossRef
14.
Zurück zum Zitat Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500CrossRef Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500CrossRef
15.
Zurück zum Zitat Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRef Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRef
16.
Zurück zum Zitat Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847CrossRef Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847CrossRef
Metadaten
Titel
A novel narnavirus isolated from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici
verfasst von
Yanhui Zhang
Jing Zhao
Xiaofei Liang
Li Zheng
Zhensheng Kang
Publikationsdatum
10.02.2020
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 4/2020
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-020-04545-2

Weitere Artikel der Ausgabe 4/2020

Archives of Virology 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.