Skip to main content
Erschienen in: Angiogenesis 3/2017

10.04.2017 | Brief Communication

A novel strategy to enhance angiogenesis in vivo using the small VEGF-binding peptide PR1P

Erschienen in: Angiogenesis | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Therapeutic angiogenesis is an experimental frontier in vascular biology that seeks to deliver angiogenic growth factors to ischemic or injured tissues to promote targeted formation of new blood vessels as an alternative approach to surgical revascularization procedures. Vascular endothelial growth factor (VEGF) is a potent angiogenic signal protein that is locally upregulated at sites of tissue injury. However, therapies aimed at increasing VEGF levels experimentally by injecting VEGF gene or protein failed to improve outcomes in human trials in part due to its short half-life and systemic toxicity. We recently designed a novel 12-amino acid peptide (PR1P) whose sequence was derived from an extracellular VEGF-binding domain of the pro-angiogenic glycoprotein prominin-1. In this study, we characterized the molecular binding properties of this novel potential therapeutic for targeted angiogenesis and provided the foundation for its use as an angiogenic molecule that can potentiate endogenous VEGF. We showed that PR1P bound VEGF directly and enhanced VEGF binding to endothelial cells and to VEGF receptors VEGFR2 and neuropilin-1. PR1P increased angiogenesis in the murine corneal micropocket assay when combined with VEGF, but had no activity without added VEGF. In addition, PR1P also enhanced angiogenesis in murine choroidal neovascularization and wound-healing models and augmented reperfusion in a murine hind-limb ischemia model. Together our data suggest that PR1P enhanced angiogenesis by potentiating the activity of endogenous VEGF. In so doing, this novel therapy takes advantage of endogenous VEGF gradients generated in injured tissues and may improve the efficacy of and avoid systemic toxicity seen with previous VEGF therapies.
Literatur
1.
Zurück zum Zitat Nessa A, Latif SA, Siddiqui NI, Hussain MA, Bhuiyan MR, Hossain MA, Akther A, Rahman M (2009) Angiogenesis-a novel therapeutic approach for ischemic heart disease. Mymensingh Med J 18(2):264–272PubMed Nessa A, Latif SA, Siddiqui NI, Hussain MA, Bhuiyan MR, Hossain MA, Akther A, Rahman M (2009) Angiogenesis-a novel therapeutic approach for ischemic heart disease. Mymensingh Med J 18(2):264–272PubMed
3.
Zurück zum Zitat Shibuya M (2001) Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 26(1):25–35CrossRefPubMed Shibuya M (2001) Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 26(1):25–35CrossRefPubMed
4.
Zurück zum Zitat Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35 (discussion 35-16)PubMed Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35 (discussion 35-16)PubMed
6.
Zurück zum Zitat Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149(1):293–305PubMedPubMedCentral Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149(1):293–305PubMedPubMedCentral
8.
Zurück zum Zitat Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102(8):898–901CrossRefPubMed Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102(8):898–901CrossRefPubMed
9.
Zurück zum Zitat Karvinen H, Pasanen E, Rissanen TT, Korpisalo P, Vahakangas E, Jazwa A, Giacca M, Yla-Herttuala S (2011) Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 18(12):1166–1172. doi:10.1038/gt.2011.66 CrossRefPubMed Karvinen H, Pasanen E, Rissanen TT, Korpisalo P, Vahakangas E, Jazwa A, Giacca M, Yla-Herttuala S (2011) Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 18(12):1166–1172. doi:10.​1038/​gt.​2011.​66 CrossRefPubMed
10.
Zurück zum Zitat Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M, Sugimachi K, Sueishi K (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90(9):966–973CrossRefPubMed Masaki I, Yonemitsu Y, Yamashita A, Sata S, Tanii M, Komori K, Nakagawa K, Hou X, Nagai Y, Hasegawa M, Sugimachi K, Sueishi K (2002) Angiogenic gene therapy for experimental critical limb ischemia: acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor-2. Circ Res 90(9):966–973CrossRefPubMed
11.
Zurück zum Zitat Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, Schainfeld R, Isner JM (2000) Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 132(11):880–884CrossRefPubMed Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, Schainfeld R, Isner JM (2000) Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 132(11):880–884CrossRefPubMed
12.
Zurück zum Zitat Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER, Investigators V (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365CrossRefPubMed Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER, Investigators V (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107(10):1359–1365CrossRefPubMed
13.
Zurück zum Zitat Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, Sluiter WJ, Tio RA, Quax PH, Gans RO, Dullaart RP, Hospers GA (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691. doi:10.1089/hum.2006.17.683 CrossRefPubMed Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, Sluiter WJ, Tio RA, Quax PH, Gans RO, Dullaart RP, Hospers GA (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691. doi:10.​1089/​hum.​2006.​17.​683 CrossRefPubMed
15.
Zurück zum Zitat Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D’Amato RJ (2013) The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 16(2):405–416. doi:10.1007/s10456-012-9323-8 CrossRefPubMed Adini A, Adini I, Ghosh K, Benny O, Pravda E, Hu R, Luyindula D, D’Amato RJ (2013) The stem cell marker prominin-1/CD133 interacts with vascular endothelial growth factor and potentiates its action. Angiogenesis 16(2):405–416. doi:10.​1007/​s10456-012-9323-8 CrossRefPubMed
17.
Zurück zum Zitat Nakai K, Rogers MS, Baba T, Funakoshi T, Birsner AE, Luyindula DS, D’Amato RJ (2009) Genetic loci that control the size of laser-induced choroidal neovascularization. FASEB J Off Publ Fed Am Soc Exp Biol 23(7):2235–2243. doi:10.1096/fj.08-124321 Nakai K, Rogers MS, Baba T, Funakoshi T, Birsner AE, Luyindula DS, D’Amato RJ (2009) Genetic loci that control the size of laser-induced choroidal neovascularization. FASEB J Off Publ Fed Am Soc Exp Biol 23(7):2235–2243. doi:10.​1096/​fj.​08-124321
18.
Zurück zum Zitat Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997. doi:10.1038/nature05249 CrossRefPubMedPubMedCentral Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997. doi:10.​1038/​nature05249 CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Yi X, Ogata N, Komada M, Yamamoto C, Takahashi K, Omori K, Uyama M (1997) Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 235(5):313–319CrossRefPubMed Yi X, Ogata N, Komada M, Yamamoto C, Takahashi K, Omori K, Uyama M (1997) Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 235(5):313–319CrossRefPubMed
20.
Zurück zum Zitat Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358CrossRefPubMed Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358CrossRefPubMed
21.
Zurück zum Zitat Obadia JF, Tatou E, Lancon JP, Raoux MH, Brenot R, David M (1992) Post-traumatic aortic valve insufficiencies. Arch Mal Coeur Vaiss 85(2):211–214PubMed Obadia JF, Tatou E, Lancon JP, Raoux MH, Brenot R, David M (1992) Post-traumatic aortic valve insufficiencies. Arch Mal Coeur Vaiss 85(2):211–214PubMed
22.
Zurück zum Zitat Brandao D, Costa C, Canedo A, Vaz G, Pignatelli D (2011) Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int Angiol 30(1):25–34PubMed Brandao D, Costa C, Canedo A, Vaz G, Pignatelli D (2011) Endogenous vascular endothelial growth factor and angiopoietin-2 expression in critical limb ischemia. Int Angiol 30(1):25–34PubMed
25.
Zurück zum Zitat Lauer G, Sollberg S, Cole M, Krieg T, Eming SA (2002) Generation of a novel proteolysis resistant vascular endothelial growth factor165 variant by a site-directed mutation at the plasmin sensitive cleavage site. FEBS Lett 531(2):309–313CrossRefPubMed Lauer G, Sollberg S, Cole M, Krieg T, Eming SA (2002) Generation of a novel proteolysis resistant vascular endothelial growth factor165 variant by a site-directed mutation at the plasmin sensitive cleavage site. FEBS Lett 531(2):309–313CrossRefPubMed
28.
Zurück zum Zitat Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775–787CrossRefPubMed Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775–787CrossRefPubMed
29.
Zurück zum Zitat Scholz D, Thomas S, Sass S, Podzuweit T (2003) Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. Mol Cell Biochem 246(1–2):57–67CrossRefPubMed Scholz D, Thomas S, Sass S, Podzuweit T (2003) Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. Mol Cell Biochem 246(1–2):57–67CrossRefPubMed
30.
Zurück zum Zitat Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55CrossRefPubMed Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55CrossRefPubMed
31.
Zurück zum Zitat Tang GL, Chang DS, Sarkar R, Wang R, Messina LM (2005) The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg 41(2):312–320. doi:10.1016/j.jvs.2004.11.012 CrossRefPubMed Tang GL, Chang DS, Sarkar R, Wang R, Messina LM (2005) The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg 41(2):312–320. doi:10.​1016/​j.​jvs.​2004.​11.​012 CrossRefPubMed
32.
Zurück zum Zitat Michaelides M, Gaillard MC, Escher P, Tiab L, Bedell M, Borruat FX, Barthelmes D, Carmona R, Zhang K, White E, McClements M, Robson AG, Holder GE, Bradshaw K, Hunt DM, Webster AR, Moore AT, Schorderet DF, Munier FL (2010) The PROM1 mutation p. R373C causes an autosomal dominant bull’s eye maculopathy associated with rod, rod-cone, and macular dystrophy. Invest Ophthalmol Vis Sci 51(9):4771–4780. doi:10.1167/iovs.09-4561 CrossRefPubMedPubMedCentral Michaelides M, Gaillard MC, Escher P, Tiab L, Bedell M, Borruat FX, Barthelmes D, Carmona R, Zhang K, White E, McClements M, Robson AG, Holder GE, Bradshaw K, Hunt DM, Webster AR, Moore AT, Schorderet DF, Munier FL (2010) The PROM1 mutation p. R373C causes an autosomal dominant bull’s eye maculopathy associated with rod, rod-cone, and macular dystrophy. Invest Ophthalmol Vis Sci 51(9):4771–4780. doi:10.​1167/​iovs.​09-4561 CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, Klein M, Howes KA, Li Y, Kaminoh Y, Chen H, Zhao C, Chen Y, Al-Sheikh YT, Karan G, Corbeil D, Escher P, Kamaya S, Li C, Johnson S, Frederick JM, Zhao Y, Wang C, Cameron DJ, Huttner WB, Schorderet DF, Munier FL, Moore AT, Birch DG, Baehr W, Hunt DM, Williams DS, Zhang K (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118(8):2908–2916. doi:10.1172/JCI35891 PubMedPubMedCentral Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, Klein M, Howes KA, Li Y, Kaminoh Y, Chen H, Zhao C, Chen Y, Al-Sheikh YT, Karan G, Corbeil D, Escher P, Kamaya S, Li C, Johnson S, Frederick JM, Zhao Y, Wang C, Cameron DJ, Huttner WB, Schorderet DF, Munier FL, Moore AT, Birch DG, Baehr W, Hunt DM, Williams DS, Zhang K (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118(8):2908–2916. doi:10.​1172/​JCI35891 PubMedPubMedCentral
Metadaten
Titel
A novel strategy to enhance angiogenesis in vivo using the small VEGF-binding peptide PR1P
Publikationsdatum
10.04.2017
Erschienen in
Angiogenesis / Ausgabe 3/2017
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-017-9556-7

Weitere Artikel der Ausgabe 3/2017

Angiogenesis 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.